
Embedded Voting Documentation
Release 0.1.7

Anonymous Authors

Feb 14, 2023

Contents:

1 Embedded Voting 1
1.1 Features . 1
1.2 Credits . 1

2 Installation 3
2.1 Stable release . 3
2.2 From sources . 3

3 Usage 5

4 Tutorials 7
4.1 Fast Tutorial . 7
4.2 1. My first Profile . 9
4.3 2. Run an election . 20
4.4 3. Analysis of the voting rules . 32
4.5 4. Ordinal preferences . 50
4.6 5. Manipulability analysis . 55
4.7 6. Multi-winner elections . 64
4.8 7. Algorithms aggregation . 74

5 IJCAI 77
5.1 Reference Scenario . 77
5.2 Impact of Numerical Parameters . 79
5.3 Changing Noises . 86
5.4 Soft Partition of the Agents . 92

6 Reference 97
6.1 Truth Generators . 97
6.2 Ratings classes . 98
6.3 Embeddings . 105
6.4 Linking Ratings and Embeddings . 116
6.5 Voting Rules . 119
6.6 Analysis Tools . 141
6.7 Aggregator . 159
6.8 Utils . 160

7 Contributing 167

i

7.1 Types of Contributions . 167
7.2 Get Started! . 168
7.3 Pull Request Guidelines . 169
7.4 Tips . 169
7.5 Deploying . 169

8 Credits 171
8.1 Development Lead . 171
8.2 Contributors . 171

9 History 173
9.1 0.1.7 (2023-02-14) . 173
9.2 0.1.6 (2023-01-23) . 173
9.3 0.1.5 (2022-01-04) . 175
9.4 0.1.4 (2021-12-06) . 175
9.5 0.1.3 (2021-10-27) . 175
9.6 0.1.2 (2021-07-05) . 175
9.7 0.1.1 (2021-04-02) . 176
9.8 0.1.0 (2021-03-31) . 176

10 Indices and tables 177

Python Module Index 179

Index 181

ii

CHAPTER 1

Embedded Voting

This contains the code for our work on embedded voting.

• Free software: GNU General Public License v3

• Documentation: https://embedded-voting.readthedocs.io.

1.1 Features

• Create a voting profile in which voters are associated to embeddings.

• Run elections on these profiles with different rules, using the geometrical aspects of the embeddings.

• The rules are defined for cardinal preferences, but some of them are adapted for the case of ordinal preferences.

• There are rules for single-winner elections and multi-winner elections.

• Classes to analyse the evolution of the score when the embeddings of one voter are changing.

• Classes to analyse the manipulability of the rules.

• Classes for algorithm aggregation.

• A lot of tutorials.

1.2 Credits

This package was created with Cookiecutter and the francois-durand/package_helper project template.

1

https://pypi.python.org/pypi/embedded_voting
https://travis-ci.org/TheoDlmz/embedded_voting
https://embedded-voting.readthedocs.io/en/latest/?badge=latest
https://codecov.io/gh/TheoDlmz/embedded_voting/branch/master/graphs/badge
https://embedded-voting.readthedocs.io
https://github.com/audreyr/cookiecutter
https://github.com/francois-durand/package_helper

Embedded Voting Documentation, Release 0.1.7

2 Chapter 1. Embedded Voting

CHAPTER 2

Installation

2.1 Stable release

To install Embedded Voting, run this command in your terminal:

$ pip install embedded_voting

This is the preferred method to install Embedded Voting, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for Embedded Voting can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/TheoDlmz/embedded_voting

Or download the tarball:

$ curl -OJL https://github.com/TheoDlmz/embedded_voting/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

3

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/TheoDlmz/embedded_voting
https://github.com/TheoDlmz/embedded_voting/tarball/master

Embedded Voting Documentation, Release 0.1.7

4 Chapter 2. Installation

CHAPTER 3

Usage

To use Embedded Voting in a project:

import embedded_voting as ev

The following notebook will help you to get started with the library.

• Fast tutorial

For more details, the following series of notebooks will guide you through the different aspects of the library:

• 1. My first Profile

This notebook cover the creation of a profile of voters with embeddings, and details the different functions you can
use to build and display this profile.

• 2. Run an election

• 3. Analysis of the voting rules

In these notebooks, you will learn how to run a single-winner election on a profile and what are the different scoring
rules you can use.

• 4. Ordinal preferences

This notebook shows how you can convert a cardinal voting profile into an ordinal voting profile by combining ordinal
voting rule like Plurality and Borda with our rules.

• 5. Manipulability analysis

This notebook show how you can explore the question of the manipulability of the different rules and their ordinal
extensions.

• 6. Multi-winner elections

In this notebook, you will learn how to run a multi-winner election on a profile of voters.

• 7. Algorithms aggregation

Finally, this notebook show how profile with embedded voters can be used for the aggregation of decision algorithms.

5

https://embedded-voting.readthedocs.io/en/latest/notebooks/tutoagg.html
https://embedded-voting.readthedocs.io/en/latest/notebooks/profile.html
https://embedded-voting.readthedocs.io/en/latest/notebooks/election.html
https://embedded-voting.readthedocs.io/en/latest/notebooks/moving.html
https://embedded-voting.readthedocs.io/en/latest/notebooks/ordinal.html
https://embedded-voting.readthedocs.io/en/latest/notebooks/manipulation.html
https://embedded-voting.readthedocs.io/en/latest/notebooks/multiwinner.html
https://embedded-voting.readthedocs.io/en/latest/notebooks/onlinelearning.html

Embedded Voting Documentation, Release 0.1.7

6 Chapter 3. Usage

CHAPTER 4

Tutorials

4.1 Fast Tutorial

This notebook explains how to use the embedded_voting package in the context of epistemic social choice and algo-
rithms aggregations.

In general algorithm aggregation rules (Average, Median, Likelihood maximization), you need diversity among the
different algorithms. However, in the real world, it is not rare to have a large group of very correlated algorithms,
which are trained on the same datasets, or which have the same structure, and give very similar answers. This can
biais the results.

With this method, you don’t suffer from this correlations between algorithms. This notebook simply explains how to
use this method.

First of all, you need to import the package:

[1]: import embedded_voting as ev

4.1.1 Generator to simulate algorithm results

Then, if you want to aggregate algorithms’ outputs, you need to know the outputs of these algorithms. In this notebook,
we will use a score generator that simulates a set of algorithms with dependencies.

In the following cell, we create a set of algorithms with 25 algorithms in the first group, 7 in the second group and 3
isolated algorithms.

[2]: groups_sizes = [25, 7, 1, 1, 1]
features = [[1, 0, 0, 1], [0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]]

generator = ev.RatingsGeneratorEpistemicGroupsMix(groups_sizes,
features,
group_noise=8,
independent_noise=.5)

(continues on next page)

7

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

ratings = generator(n_candidates=20)
true_ratings = generator.ground_truth_
print(ratings.shape)

(35, 20)

The last command generates a matrix of scores that contain the outputs given by the algorithms to 20 inputs. If you
use this method, you can provide the score matrix by putting your algorithms’ results in a matrix of shape 𝑛𝑣𝑜𝑡𝑒𝑟𝑠 ×
𝑛𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.

4.1.2 Find the best alternative

Now, we can simply create an *Aggregator* object with the following line:

[3]: aggregator = ev.Aggregator()

The following cell show how to run a “election”:

[4]: results = aggregator(ratings)

Then we can obtain the results like this:

[5]: print("Ranking :", results.ranking_)
print("Winner :", results.winner_)

Ranking : [2, 11, 5, 13, 16, 7, 18, 0, 3, 6, 12, 14, 1, 19, 9, 10, 15, 8, 17, 4]
Winner : 2

You will probably keep using the same Aggregator for other elections with the same algorithms, like in the following
cell:

[6]: for i in range(10):
ratings = generator(20)
print(f'Winner {i+1} : {aggregator(ratings).winner_}')

Winner 1 : 11
Winner 2 : 1
Winner 3 : 0
Winner 4 : 19
Winner 5 : 0
Winner 6 : 18
Winner 7 : 19
Winner 8 : 18
Winner 9 : 1
Winner 10 : 18

During each election, the Aggregator saves the scores given by the algorithms to know them better. However, it does
not compute anything with this new data if it is not asked to do it.

Every now and then, you can retrain your Aggregator with these newest data. We advise to do it often where there is
not a lot of training data and once you have done enough elections (typically, when you have shown as many candidates
than you have algorithms), you don’t need to do it a lot.

To train your Aggregator on the newest data, do the following:

8 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

[7]: aggregator.train()

[7]: <embedded_voting.aggregation.aggregator.Aggregator at 0x2b789c15518>

You can also train it before an election using the data from the election by doing this:

[8]: results = aggregator(ratings, train=True)

For the first election of your aggregator, you do not need to specify that train is True because the aggregator always
do a training step when it is created.

4.1.3 Fine-tune the aggregation rule

If you want to go further, you can change some aspects of the aggregation rule.

The first thing that you may want to change is the aggregation rule itself. The default one is FastNash, but you can try
FastLog, FastSum or FastMin, which can give different results.

We advise to use FastNash, which shows stronger theoretical and experimental results.

[9]: aggregator_log = ev.Aggregator(rule=ev.RuleFastLog())
aggregator_sum = ev.Aggregator(rule=ev.RuleFastSum())
aggregator_min = ev.Aggregator(rule=ev.RuleFastMin())
print("FastNash:", aggregator(ratings).ranking_)
print("FastLog:", aggregator_log(ratings).ranking_)
print("FastSum:", aggregator_sum(ratings).ranking_)
print("FastMin:", aggregator_min(ratings).ranking_)

FastNash: [18, 1, 0, 13, 15, 14, 2, 10, 11, 9, 19, 7, 3, 5, 12, 4, 8, 17, 6, 16]
FastLog: [18, 1, 0, 13, 15, 14, 10, 2, 11, 9, 19, 7, 3, 5, 12, 4, 8, 17, 6, 16]
FastSum: [18, 15, 1, 0, 13, 14, 11, 10, 9, 2, 7, 19, 3, 12, 5, 4, 17, 8, 6, 16]
FastMin: [18, 1, 0, 15, 13, 14, 11, 2, 10, 9, 19, 7, 3, 12, 5, 17, 8, 4, 6, 16]

You can also use the average rule:

[10]: aggregator_avg = ev.Aggregator(rule=ev.RuleSumRatings())
results = aggregator_avg(ratings)
print(aggregator_avg(ratings).ranking_)

[18, 15, 1, 0, 13, 14, 11, 10, 9, 7, 2, 19, 3, 12, 17, 4, 5, 6, 16, 8]

You can also change the transformation of scores. The default one is the following :

𝑓(𝑠) =

√︂
𝑠

||𝑠| |

But you can put any rule you want, like the identity function 𝑓(𝑠) = 𝑠 if you want. In general, if you use a coherent
score transformation, it will not change a lot the results.

[11]: aggregator_id = ev.Aggregator(rule=ev.RuleFastNash(f=lambda x,y,z:x))
print(aggregator_id(ratings).ranking_)

[18, 1, 13, 0, 15, 14, 10, 2, 11, 9, 19, 7, 3, 5, 4, 12, 8, 17, 6, 16]

4.2 1. My first Profile

In this Notebook, I will explain how to create a profile of voters with embeddings.

4.2. 1. My first Profile 9

Embedded Voting Documentation, Release 0.1.7

[1]: import embedded_voting as ev
import numpy as np
import matplotlib.pyplot as plt

4.2.1 Build a profile

Let’s first create a simple profile of ratings, with 𝑚 = 5 candidates and 𝑛 = 100 voters:

[2]: n_candidates = 5
n_voters = 100
profile = ev.Ratings(np.random.rand(n_voters,n_candidates))
profile.voter_ratings(0)

[2]: array([0.9818839 , 0.50767343, 0.35742337, 0.4115904 , 0.51233348])

Here we created a profile with random ratings between 0 and 1. We could have used the impartial culture model for
this :

[3]: profile = ev.RatingsGeneratorUniform(n_voters)(n_candidates)
profile.voter_ratings(0)

[3]: array([0.43593987, 0.95181078, 0.60167015, 0.42875782, 0.78548049])

We can also change the ratings afterwards, for instance by saying that the last 50 voters do not like the first 2 candidates
:

[4]: profile[50:,:2] = 0.1
profile.voter_ratings(50)

[4]: array([0.1 , 0.1 , 0.97879522, 0.85108355, 0.82567096])

Now, we want to create embeddings for our voters. To do so, we create an Embeddings object:

[5]: embs = ev.Embeddings(([[.9,0,.1],
[.8,.1,0],
[.1,.1,.9],
[0,.2,.8],
[0,1,0],
[.2,.3,.2],
[.5,.1,.9]]), norm=False)

embs.voter_embeddings(0)

[5]: array([0.9, 0. , 0.1])

We can normalize the embeddings, so that each vector have norm 1:

[6]: embs = embs.normalized()
embs.voter_embeddings(0)

[6]: array([0.99388373, 0. , 0.11043153])

You can also use an Embedder to generate embeddings from the ratings. The simplest one is the one generating the
uniform distribution of embeddings :

[7]: embedder = ev.EmbeddingsFromRatingsRandom(3)
embeddings = embedder(profile)
embeddings.voter_embeddings(0)

10 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

[7]: array([0.76396325, 0.43197473, 0.47933077])

Let’s now create more complex embeddings for our profile

[8]: positions = [[.8,.2,.2] + np.random.randn(3)*0.05 for _ in range(33)]
positions += [[.2,.8,.2] + np.random.randn(3)*0.05 for _ in range(33)]
positions += [[.2,.2,.8] + np.random.randn(3)*0.05 for _ in range(34)]
embs = ev.Embeddings(np.array(positions), norm=False)

There are several way to create embeddings, some of them using the ratings of the voters, but we will see it in another
notebook.

4.2.2 Visualize the profile

Now that we have a profile, we want to visualize it. Since the number of embeddings dimensions is only 3 in our
profile, we can easily plot it on a figure.

There are two ways of plotting your profile, using a 3D plot or a ternary plot :

• On the 3D plot, each voter is represented by a line from the origin to its position on the unit sphere.

• On the ternary plot, the surface of the unit sphere is represented as a 2D space and each voter is represented by
a dot.

On the following figures we can see the red group of voters, which corresponds to the 25 voters with similar embed-
dings I added in the fourth cell.

[9]: embs.plot("3D")
embs.plot("ternary")

4.2. 1. My first Profile 11

Embedded Voting Documentation, Release 0.1.7

12 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

[9]: TernaryAxesSubplot: -9223371919785834117

You can also plot the two figures side by side :

[10]: fig = plt.figure(figsize=(15,7.5))
embs.plot("3D", fig=fig, plot_position=[1,2,1], show=False)
embs.plot("ternary", fig=fig, plot_position=[1,2,2], show=False)
plt.show()

4.2. 1. My first Profile 13

Embedded Voting Documentation, Release 0.1.7

4.2.3 Visualize the candidates

With the same idea, you can visualize the candidates.

• On a 3D plot, the score given by a voter to a candidate is represented by the size of its vector.

• On a ternary plot, the score given by a voter to a candidate is represented by the size of the dot.

Use plot_candidate to plot only one candidate and plot_candidates to plot all the candidates. In the following plots,
we can see that the blue group don’t like the first two candidates.

[11]: embs.plot_candidates(profile, "3D")
embs.plot_candidates(profile, "ternary")

14 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

4.2.4 Beyond 3 dimensions

What if the profile has more than 3 dimensions?

We still want to visualize the profile and the candidates.

In the following cell, we create a profile with 4 dimensions.

[12]: embs = ev.EmbeddingsFromRatingsRandom(4)(profile).normalized()

We use the functions described above and specify which dimensions to use on the plots (we need exactly 3 dimen-
sions).

By default, the function uses the first three dimensions.

In the following cell, we show the distribution of voters with different subsets of the 4 possible dimensions.

[13]: fig = plt.figure(figsize=(30,7.5))
embs.plot("3D", dim=[0,1,2], fig=fig, plot_position=[1,4,1], show=False)
embs.plot("3D", dim=[0,1,3], fig=fig, plot_position=[1,4,2], show=False)
embs.plot("3D", dim=[0,2,3], fig=fig, plot_position=[1,4,3], show=False)
embs.plot("3D", dim=[1,2,3], fig=fig, plot_position=[1,4,4], show=False)
plt.show()

4.2.5 Recenter and dilate a profile

Sometimes the voters’ embeddings are really close one to another and it is hard to do anything with the profile, because
it looks like every voter is the same.

For instance, we can create three groups of voters with very similar embeddings :

[14]: embeddings = ev.Embeddings([[.9,.3,.3],[.8,.4,.3],[.8,.3,.4]], norm=True)

If I plot this profile, the three voters are really close to each other:

[15]: fig = plt.figure(figsize=(15,7.5))
embeddings.plot("3D", fig=fig, plot_position=[1,2,1], show=False)
embeddings.plot("ternary", fig=fig, plot_position=[1,2,2], show=False)
plt.show()

4.2. 1. My first Profile 15

Embedded Voting Documentation, Release 0.1.7

The first thing we can do is to recenter the population of voters:

[16]: embeddings_optimized = embeddings.recentered(False)

[17]: fig = plt.figure(figsize=(14,7))
embeddings.plot("ternary", fig=fig, plot_position=[1,2,1], show=False)
embeddings_optimized.plot("ternary", fig=fig, plot_position=[1,2,2], show=False)
plt.show()

Now, we can dilate the profile in such a way that the relative distance between each pair of voters remains the same,
but they take all the space they can on the non-negative orthant.

To do so, we use the funtion dilated.

[18]: embeddings_optimized = embeddings_optimized.dilated(approx=False)

As you can see on the second plot, voters are pushed to the extreme positions of the non-negative orthant.

16 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

[19]: fig = plt.figure(figsize=(14,7))
embeddings.plot("ternary", fig=fig, plot_position=[1,2,1], show=False)
embeddings_optimized.plot("ternary", fig=fig, plot_position=[1,2,2], show=False)
plt.show()

4.2.6 Introduction to parametric profile generator

Our package also proposes an easy way to build a profile with “groups” of voters who have similar embeddings and
preferences.

To do so, we need to specify :

• The number of candidates, dimensions, and voters in the profile.

• The matrix 𝑀 of the scores of each “group”. 𝑀(𝑖, 𝑗) is the score given by the group 𝑗 to the candidate 𝑖.

• The proportion of the voters in each group.

For instance, in the following cell, I am building a profile of 100 voters in 3 dimensions, with 5 candidates. There are
3 groups in this profile :

• The red group, with 50% of the voters. Voters from this group have preferences close to 𝑐0 > 𝑐1 > 𝑐2 > 𝑐3 >
𝑐4.

• The green group, with 30% of the voters. Voters from this group have preferences close to 𝑐1 ∼ 𝑐3 > 𝑐0 ∼
𝑐2 ∼ 𝑐4.

• The blue group, with 20% of the voters. Voters from this group have preferences close to 𝑐4 > 𝑐3 > 𝑐2 > 𝑐1 >
𝑐0.

[20]: scores_matrix = np.array([[1, .7, .5, .3, 0], [.2, .8, .2, .8, .2], [0, .3, .5, .7,
→˓1]])
proba = [.5, .3, .2]
n_voters = 100
n_dimensions, n_candidates = np.array(scores_matrix).shape
embeddingsGenerator = ev.EmbeddingsGeneratorPolarized(n_voters, n_dimensions, proba)
ratingsGenerator = ev.RatingsFromEmbeddingsCorrelated(0, scores_matrix, n_dimensions,
→˓n_candidates)

4.2. 1. My first Profile 17

Embedded Voting Documentation, Release 0.1.7

Then, we need to specify the level of polarisation of the profile.

A high level of polarisation (> 0.5) means that voters in the different groups are aligned with the dimension of each
group. Therefore, there embeddings are really similar.

[21]: embeddings = embeddingsGenerator(polarisation=0.7)

fig = plt.figure(figsize=(15,7.5))
embeddings.plot("3D", fig=fig, plot_position=[1,2,1], show=False)
embeddings.plot("ternary", fig=fig, plot_position=[1,2,2], show=False)
plt.show()

On the opposite, if the level of polarisation is low (< 0.5), then voters’ embeddings are more random.

[22]: embeddings = embeddingsGenerator(polarisation=0.2)

fig = plt.figure(figsize=(15,7.5))
embeddings.plot("3D", fig=fig, plot_position=[1,2,1], show=False)
embeddings.plot("ternary", fig=fig, plot_position=[1,2,2], show=False)
plt.show()

18 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

The second important parameter is coherence.

The coherence parameter characterizes the correlation between the embeddings of the voters and the score they give
to the candidates. If this parameter is set to 1, then the scores of a group dictate the scores of the voters in this group.

By default, it is set to 0, which means that the scores are totally random and there is no correlation between the
embeddings and the scores.

[23]: profile = ratingsGenerator(embeddings)
embeddings.plot_candidates(profile)

In the following cell, we can see that a high coherence implies that embeddings and scores are very correlated.

[24]: ratingsGenerator = ev.RatingsFromEmbeddingsCorrelated(0.8, scores_matrix, n_
→˓dimensions, n_candidates)
profile = ratingsGenerator(embeddings)
embeddings.plot_candidates(profile)

4.2. 1. My first Profile 19

Embedded Voting Documentation, Release 0.1.7

4.3 2. Run an election

In this notebook, I will explain how to run a single-winner election on a voting profile with embedded voters.

[1]: import numpy as np
import embedded_voting as ev
import matplotlib.pyplot as plt

np.random.seed(42)

4.3.1 Creating the profile

Let’s say we have 5 candidates and 3 groups of voters:

• The red group contains 50% of the voters, and the average scores of candidates given by this group are
[0.9, 0.3, 0.5, 0.2, 0.2].

• The green group contains 25% of the voters, and the average scores of candidates given by this group are
[0.2, 0.6, 0.5, 0.5, 0.8].

• The blue group contains 25% of the voters, and the average scores of candidates given by this group are
[0.2, 0.6, 0.5, 0.8, 0.5].

[2]: scores_matrix = np.array([[.9, .3, .5, .3, .2], [.2, .6, .5, .5, .8], [.2, .6, .5, .8,
→˓ .5]])
proba = [.5, .25, .25]

n_voters = 100
n_dimensions, n_candidates = np.array(scores_matrix).shape
embeddingsGen = ev.EmbeddingsGeneratorPolarized(n_voters, n_dimensions, proba)
ratingsGen = ev.RatingsFromEmbeddingsCorrelated(0.8, scores_matrix, n_dimensions, n_
→˓candidates)

embeddings = embeddingsGen(polarisation=0.4)
profile = ratingsGen(embeddings)

We can visualize this profile, as explained in the previous notebook:

[3]: fig = plt.figure(figsize=(15,7.5))
embeddings.plot("3D", fig=fig, plot_position=[1,2,1], show=False)
embeddings.plot("ternary", fig=fig, plot_position=[1,2,2], show=False)
plt.show()

20 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

We can also visualize the candidates. Each voter is represented by a line and the length of the line represents the
score the voter gives to the candidate.

[4]: embeddings.plot_candidates(profile, "3D")
embeddings.plot_candidates(profile, "ternary")

Now, we want to determine the best candidate. Is it the Candidate 0, which is loved by the majority group? Or is it
the Candidate 2, which is not hated by any group?

To decide that, we can use a whole set of voting rules. First, there is the simple rules, which are not based on the
embeddings. These rules are Range voting (we take the average score) and Nash voting (we take the product of the
score, or the average log score).

4.3.2 Notations

In the next parts of this notebook, I will use some notations:

4.3. 2. Run an election 21

Embedded Voting Documentation, Release 0.1.7

Notation Meaning Function
𝑣𝑖 The 𝑖𝑡ℎ voter
𝑐𝑗 The 𝑗𝑡ℎ candidate
𝑠𝑖(𝑐𝑗) The score given by the voter 𝑣𝑖 to the candidate 𝑐𝑗 Profile.scores[i,j]
𝑆(𝑐𝑗) The score of the candidate 𝑐𝑗 after the aggregation ScoringRule.scores_[j]
𝑤(𝑐𝑗) The welfare of the candidate 𝑐𝑗 ScoringRule.welfare_[j]
𝑀 The embeddings matrix, such that 𝑀𝑖 are the embeddings of 𝑣𝑖 Profile.embeddings
𝑀(𝑐𝑗) The candidate matrix, such that 𝑀(𝑐𝑗)𝑖 = 𝑠𝑖(𝑐𝑗)×𝑀𝑖 Profile.scored_embeddings(j)
𝑠*(𝑐𝑗) The vector of score of one candidate, such that 𝑠*(𝑐𝑗)𝑖 = 𝑠𝑖(𝑐𝑗) Profile.scores[:,j]

4.3.3 Simple rules

Average score (Range Voting)

This is the most intuitive rule when we need to aggregate the score of the different voters to establish a ranking of the
candidate. We simply take the sum of every vote given to this candidate:

∀𝑗, 𝑆(𝑐𝑗) =
∑︁
𝑖

𝑠𝑖(𝑐𝑗)

We create the election in the following cell.

[5]: election = ev.RuleSumRatings()

We then run the election like this

[6]: election(profile, embeddings)

[6]: <embedded_voting.rules.singlewinner_rules.rule_sum_ratings.RuleSumRatings at
→˓0x1e2e5614710>

Then, we can compute the score of every candidate, the ranking, and of course the winner of the election:

[7]: print('Scores : ', election.scores_)
print('Ranking : ', election.ranking_)
print('Winner : ', election.winner_)

Scores : [45.77999664207862, 48.88823373691184, 49.96870542210909, 52.26932370998465,
→˓ 47.86098615045205]
Ranking : [3, 2, 1, 4, 0]
Winner : 3

We can also compute the welfare of each candidate, where the welfare is defined as:

𝑤(𝑐𝑗) =
𝑆(𝑐𝑗)−min𝑐 𝑆(𝑐)

max𝑐 𝑆(𝑐)−min𝑐 𝑆(𝑐)

[8]: print('Welfare : ', election.welfare_)

Welfare : [0.0, 0.4789767971790928, 0.6454766012251681, 1.0, 0.3206787832694216]

We can plot the winner of the election using the function plot_winner().

22 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

[9]: fig = plt.figure(figsize=(10,5))
election.plot_winner("3D", fig=fig, plot_position=[1,2,1], show=False)
election.plot_winner("ternary", fig=fig, plot_position=[1,2,2], show=False)
plt.show()

We can plot the ranking of the election using the function plot_ranking().

[10]: election.plot_ranking("3D")
election.plot_ranking("ternary")

4.3. 2. Run an election 23

Embedded Voting Documentation, Release 0.1.7

Product of scores (Nash)

The second intuitive rule is the product of the scores, also called Nash welfare. It is equivalent to the sum of the log
of the scores.

We have

𝑆(𝑐𝑗) =
∏︁
𝑖

𝑠𝑖(𝑐𝑗) = 𝑒
∑︀

𝑖 log(𝑠𝑖(𝑐𝑗))

[12]: election = ev.RuleShiftProduct()
election(profile, embeddings)
print('Scores : ', election.scores_)
print('Ranking : ', election.ranking_)
print('Winner : ', election.winner_)
election.plot_ranking("3D")

Scores : [8.951032542639148e+38, 3.715630226275884e+39, 5.989493011777882e+39, 1.
→˓3845840911371833e+40, 2.3053960275427698e+39]
Ranking : [3, 2, 1, 4, 0]
Winner : 3

You probably noticed that scores are composed of two elements (e.g (100, 5.393919173647501e-37)). In this particu-
lar case, the first element is the number of non-zero individual scores and the second one is the product of the non-zero
scores. Indeed, if some voter gives a score of 0 to every candidate, the product of scores will be 0 for every candidate
and we cannot establish a ranking.

We use similar ideas for some of the rules that will come later.

In these cases, if we have 𝑆(𝑐𝑗) = (𝑆(𝑐𝑗)1, 𝑆(𝑐𝑗)2), the score used in the welfare is :

𝑆′(𝑐𝑗) =

{︃
𝑆(𝑐𝑗)2 if 𝑆(𝑐𝑗)1 = max𝑐 𝑆(𝑐)1

0 Otherwise

In other word, the welfare is > 0 if and only if the first component of the score is at the maximum.

[13]: print("Welfare : ",election.welfare_)

Welfare : [0.0, 0.2177889049017948, 0.3933667635308749, 1.0, 0.1088967138875542]

4.3.4 Geometrical rules

All the rules that I will describe now are using the embeddings of the voters. Some of them are purely geometrical,
other are more algebraic. Let’s start with the geometrical ones.

All of the rules presented here do not depend on the basis used for the embeddings. Indeed, the result will not change
if you change the vector basis of the embeddings (for instance, by doing a rotation)

24 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

Zonotope

The zonotope of a set of vectors 𝑉 = {𝑣1, . . . , 𝑣𝑛} is the geometrical object defined as 𝒵(𝑉) = {
∑︀

𝑖 𝑡𝑖𝑣𝑖|∀𝑖, 𝑡𝑖 ∈
[0, 1]}.

For a matrix 𝑀 , we have 𝒵(𝑀) = 𝒵({𝑀1, . . . ,𝑀𝑛}).

The following figure illustrate the zonotope in 2D for a set of 3 vectors.

In the case of an election, the score of the candidate 𝑐𝑗 is defined as the volume of the Zonotope defined by the rows
of the matrix 𝑀(𝑐𝑗) :

𝑆(𝑐𝑗) = vol(𝒵(𝑀(𝑐𝑗)))

There is a simple formula to compute this volume, but it is exponential in the number of dimensions.

[14]: election = ev.RuleZonotope()
election(profile, embeddings)
print('Scores : ', election.scores_)
print('Ranking : ', election.ranking_)
print('Winner : ', election.winner_)
print('Welfare : ', election.welfare_)
election.plot_ranking("3D")

Scores : [(3, 2512.3852946433435), (3, 3478.5303669376613), (3, 3724.291234894805),
→˓(3, 4197.7832046975145), (3, 3317.721702753313)]
Ranking : [3, 2, 1, 4, 0]
Winner : 3
Welfare : [0.0, 0.5732444940929495, 0.7190622066290026, 1.0, 0.47783161667981705]

4.3. 2. Run an election 25

Embedded Voting Documentation, Release 0.1.7

Maximum Parallelepiped

The maxcube rule is also very geometrical. It computes the maximum volume spanned by a linearly independent
subset of rows of the matrix 𝑀(𝑐𝑗).

The figure below shows an example of how it works.

[15]: election = ev.RuleMaxParallelepiped()
election(profile, embeddings)
print('Scores : ', election.scores_)
print('Ranking : ', election.ranking_)
print('Winner : ', election.winner_)
print('Welfare : ', election.welfare_)
election.plot_ranking("3D")

Scores : [(3, 0.1288637458094931), (3, 0.1665379237215778), (3, 0.15408795064264366),
→˓ (3, 0.1825593712490694), (3, 0.15152969628703225)]
Ranking : [3, 1, 2, 4, 0]
Winner : 3
Welfare : [0.0, 0.701624715303474, 0.46976275304839044, 1.0, 0.42211912594341866]

26 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

SVD Based rules

Here are some of the most interesting rules you can use for embedded voters. They are based on the Singular Values
Decomposition (SVD) of the matrices 𝑀(𝑐𝑗).

Indeed, if we denote (𝜎1(𝑐𝑗), . . . , 𝜎𝑛(𝑐𝑗)) the singular values of the matrix 𝑀(𝑐𝑗), then the SVDRule() while simply
apply the aggregation_rule passed as parameter to them.

Singular values are very interesting in this context because each 𝜎𝑘 represent one group of voter.

In the following cell, I use the product function, that means that we compute the score with the following formula :

𝑆(𝑐𝑗) =
∏︁
𝑘

𝜎𝑘(𝑐𝑗)

[16]: election = ev.RuleSVD(aggregation_rule=np.prod, use_rank=False, square_root=True)
election(profile, embeddings)
print('Scores : ', election.scores_)
print('Ranking : ', election.ranking_)
print('Winner : ', election.winner_)
print('Welfare : ', election.welfare_)
election.plot_ranking("3D")

Scores : [26.741050420162296, 32.74789296371305, 33.93409961876206, 35.
→˓796076724146936, 32.132208898968436]
Ranking : [3, 2, 1, 4, 0]
Winner : 3
Welfare : [0.0, 0.6633710761179632, 0.7943708783523339, 1.0, 0.5953774509118517]

However, if you want to take the product of the singular values, you can directly use SVDNash(), as in the following
cell.

This rule is a great rule because the score is equal to what is known as the volume of the matrix 𝑀(𝑐𝑗).

Indeed, we have :

𝑆(𝑐𝑗) =
∏︁
𝑘

𝜎𝑘(𝑐𝑗) = det(𝑀(𝑐𝑗)
𝑡𝑀(𝑐𝑗)) = det(𝑀(𝑐𝑗)𝑀(𝑐𝑗)

𝑡)

4.3. 2. Run an election 27

Embedded Voting Documentation, Release 0.1.7

which is often described as the volume of a matrix.

[17]: election = ev.RuleSVDNash(use_rank=False)
election(profile, embeddings)
print('Scores : ', election.scores_)
print('Ranking : ', election.ranking_)
print('Winner : ', election.winner_)
print('Welfare : ', election.welfare_)
election.plot_ranking("3D")

Scores : [26.741050420162296, 32.74789296371305, 33.93409961876206, 35.
→˓796076724146936, 32.132208898968436]
Ranking : [3, 2, 1, 4, 0]
Winner : 3
Welfare : [0.0, 0.6633710761179632, 0.7943708783523339, 1.0, 0.5953774509118517]

You can take the sum of the singular values with SVDSum() :

𝑆(𝑐𝑗) =
∑︁
𝑘

𝜎𝑘(𝑐𝑗)

This corresponds to a utilitarian approach of the election.

[18]: election = ev.RuleSVDSum(use_rank=False)
election(profile, embeddings)
print('Scores : ', election.scores_)
print('Ranking : ', election.ranking_)
print('Winner : ', election.winner_)
print('Welfare : ', election.welfare_)
election.plot_ranking("3D")

Scores : [10.281197693329844, 10.791272853780711, 10.916846435776982, 11.
→˓138673498000554, 10.697528579564]
Ranking : [3, 2, 1, 4, 0]
Winner : 3
Welfare : [0.0, 0.5948566218107435, 0.7413022489786075, 1.0, 0.48553076829268343]

You can take the minimum of the singular values with SVDMin() :

𝑆(𝑐𝑗) = min
𝑘

𝜎𝑘(𝑐𝑗)

This corresponds to an egalitarian approach of the election.

28 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

[19]: election = ev.RuleSVDMin(use_rank=False)
election(profile, embeddings)
print('Scores : ', election.scores_)
print('Ranking : ', election.ranking_)
print('Winner : ', election.winner_)
print('Welfare : ', election.welfare_)
election.plot_ranking("3D")

Scores : [1.9464873750164875, 2.213040976979755, 2.1945439239678493, 2.
→˓272105557536364, 2.2490434464796065]
Ranking : [3, 4, 1, 2, 0]
Winner : 3
Welfare : [0.0, 0.8186078550665599, 0.7618018964165792, 1.0, 0.9291743757111914]

You can take the maximum of the singular values with SVDMax():

𝑆(𝑐𝑗) = max
𝑘

𝜎𝑘(𝑐𝑗)

For single winner voting, this rule seems not very suited, because it will only maximize the satisfaction of one group.
But it can be very useful for multi-winner voting (see the dedicated notebook).

[20]: election = ev.RuleSVDMax(use_rank=False)
election(profile, embeddings)
print('Scores : ', election.scores_)
print('Ranking : ', election.ranking_)
print('Winner : ', election.winner_)
print('Welfare : ', election.welfare_)
election.plot_ranking("3D")

Scores : [6.072281075810715, 6.186173173309101, 6.247073024447592, 6.407979709322462,
→˓ 6.110288589883775]
Ranking : [3, 2, 1, 4, 0]
Winner : 3
Welfare : [0.0, 0.33926887430836317, 0.5206811443001008, 1.0, 0.1132191503893329]

For this rule in particular, we can plot the “features” of the candidates, which actually corresponds to the position of
the most important singular vector from the singular value decomposition.

4.3. 2. Run an election 29

Embedded Voting Documentation, Release 0.1.7

[21]: election.plot_features("3D")
election.plot_features("ternary")

Finally, there is the SVDLog() rule, which is a bit more exotic. It corresponds to the following equation :

𝑆(𝑐𝑗) =
∑︁
𝑘

log
(︂
1 +

𝜎𝑘(𝑐𝑗)

𝐶

)︂
where 𝐶 is a constant passed as parameter (its default value is 1).

[22]: election = ev.RuleSVDLog(const=2, use_rank=False)
election(profile, embeddings)
print('Scores : ', election.scores_)
print('Ranking : ', election.ranking_)
print('Winner : ', election.winner_)
print('Welfare : ', election.welfare_)
election.plot_ranking("3D")

Scores : [2.831659715452525, 2.940987770371308, 2.9627590583541927, 2.
→˓996678664966983, 2.927844515160104]
Ranking : [3, 2, 1, 4, 0]
Winner : 3
Welfare : [0.0, 0.6625181849748972, 0.7944502330635768, 1.0, 0.582871239882373]

The following table summarize the different rules based on the SVD :

30 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

Name Equation Interpretation
SVDNash

𝑆(𝑐𝑗) =
∏︁
𝑘

𝜎𝑘(𝑐𝑗)

Nash Welfare

SVDSum

𝑆(𝑐𝑗) =
∑︁
𝑘

𝜎𝑘(𝑐𝑗)

Utilitarian

SVDMin

𝑆(𝑐𝑗) = min
𝑘

𝜎𝑘(𝑐𝑗)

Egalitarian

SVDMax

𝑆(𝑐𝑗) = max
𝑘

𝜎𝑘(𝑐𝑗)

Dictature of majority

SVDLog

𝑆(𝑐𝑗) =
∑︁
𝑘

log
(︂
1 +

𝜎𝑘(𝑐𝑗)

𝐶

)︂Between Nash and Utilitarian

Features based rule

The next rule is based on what is often called features in machine learning.

Indeed, it consists in solving the linear regression on 𝑀𝑋𝑗 = 𝑠*(𝑐𝑗) for every candidate 𝑐𝑗 . We want the vector 𝑋𝑗

such that

𝑋𝑗 = min
𝑋

||𝑀𝑋 − 𝑠*(𝑐𝑗)||22

It corresponds to 𝑋𝑗 = (𝑀 𝑡𝑀)−1𝑀𝑠*(𝑐𝑗). This is the classic feature vector for candidate 𝑐𝑗 .

In the following cell, the features of every candidate are shown in black on the 3D plots.

[23]: election = ev.RuleFeatures()
election(profile, embeddings)
election.plot_features("3D")
election.plot_features("ternary")

4.3. 2. Run an election 31

Embedded Voting Documentation, Release 0.1.7

Then, we define the score of candidate 𝑐𝑗 as :

𝑆(𝑐𝑗) = ||𝑋𝑗 ||22

[24]: print('Scores : ', election.scores_)
print('Ranking : ', election.ranking_)
print('Winner : ', election.winner_)
print('Welfare : ', election.welfare_)
election.plot_ranking("3D")

Scores : [0.679363163960879, 0.596773936003501, 0.5674211903311394, 0.
→˓6579158241916001, 0.6380881542815943]
Ranking : [0, 3, 4, 1, 2]
Winner : 0
Welfare : [1.0, 0.2622139374587864, 0.0, 0.8084066318124928, 0.631282097850031]

4.4 3. Analysis of the voting rules

To explore the rules in more details, we created a class MovingVoterProfile, which enables to see the evolution of the
candidates’ scores depending on the embeddings of one particular voter, which are changing.

[1]: import embedded_voting as ev
import numpy as np

[2]: moving_profile = ev.MovingVoter()

4.4.1 Description of the profile

The basic version of the profile contains 4 candidates and 4 voters :

• Voter 0 is the moving voter. His initial position is the same than the Voter 1, and he gives a score of 0.8 to every
candidate, except for Candidate 4 which receive a score of 0.5.

32 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

• Voter 1, 2, and 3 respectively supports Candidate 1, 2 and 3 with a score of 1 and gives a score of 0.1 to every
other candidate, except Candidate 4 which receive a score of 0.5 from every voter.

The following figure shows the initial configuration of the profile.

[3]: moving_profile.embeddings.plot()

[3]: <matplotlib.axes._subplots.Axes3DSubplot at 0x2531c6f3b38>

4.4.2 The evolution of the scores

Then we want to track the evolution of the scores of the different candidates depending on the embeddings of the
Voter 0. These embeddings are changing as detailed on the following figure:

4.4. 3. Analysis of the voting rules 33

Embedded Voting Documentation, Release 0.1.7

As you can see, the voter starts in the red area and ends in the green area but always remains orthogonal to the blue
voter.

Using this, we can see what happens to the different scores depending on the voting rule used.

Without any surprise, it does not change anything for rules which do not depend on the embeddings :

• When we do the sum of the scores, every candidate has the same final score.

• When we do the product of the scores, only the Candidate 4 (consensus) has a good score.

[4]: rule = ev.RuleSumRatings()
moving_profile(rule).plot_scores_evolution()

34 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

[5]: rule = ev.RuleShiftProduct()
moving_profile(rule).plot_scores_evolution()

4.4. 3. Analysis of the voting rules 35

Embedded Voting Documentation, Release 0.1.7

It becomes interesting when we look at geometrical rules. What happens for the Zonotope and MaxCube rules?

• The Consensus candidate gets the best score.

• The second best candidate is the one supported by the Orthogonal vector. Indeed, he is supported by the
moving voter and a another one which is orthogonal to the first one, and orthogonality maximizes the volume.

• For the same reason, the candidate supported by the voter of the start gets a better score at the end, and the
candidate supported by the voter of the end get the better score at the beginning.

However, you can notice that the score of some candidate is greater when the moving voter is between the two
positions, and there is no intuitive interpretation of this observation.

[6]: rule = ev.RuleZonotope()
moving_profile(rule).plot_scores_evolution()

36 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

[7]: rule = ev.RuleMaxParallelepiped()
moving_profile(rule).plot_scores_evolution()

4.4. 3. Analysis of the voting rules 37

Embedded Voting Documentation, Release 0.1.7

What happens with SVD Rules?

• SVDNash, SVDLog and SVDSum work a bit like the Zonotope and MaxCube rules, but the scores of the
candidates are always between their scores at the beginning and at the end.

• SVDMin is not very interesting: nothing really change between the beginning and the end.

• SVDMax is the opposite of the other rules : the Consensus candidate and the Orthogonal candidate receive
the worst scores, but the candidate supported by the voter from the start get the best score at the beginning and
the candidate supported by the voter from the end get the best score at the end.

[8]: rule = ev.RuleSVDNash()
moving_profile(rule).plot_scores_evolution()

38 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

[9]: rule = ev.RuleSVDMin()
moving_profile(rule).plot_scores_evolution()

4.4. 3. Analysis of the voting rules 39

Embedded Voting Documentation, Release 0.1.7

[10]: rule = ev.RuleSVDSum()
moving_profile(rule).plot_scores_evolution()

40 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

[11]: rule = ev.RuleSVDMax()
moving_profile(rule).plot_scores_evolution()

4.4. 3. Analysis of the voting rules 41

Embedded Voting Documentation, Release 0.1.7

Finally, we obtain a beautiful figure with the Features rule, even if it is a bit strange.

[12]: rule = ev.RuleFeatures()
moving_profile(rule).plot_scores_evolution()

42 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

4.4.3 The evolutions of the features

Some rules associate features vectors to every candidate. That is the case of the SVDMax and the Features rules.
We can show the evolution of these vectors using the same class.

You can see that there are major differences between the features of the two rules. For instance, the features of the
Consensus candidate follow the moving voter for the SVDMax rule, and they are on the center of the simplex for the
Features rule.

[13]: rule = ev.RuleSVDMax()
moving_profile(rule).plot_features_evolution()

4.4. 3. Analysis of the voting rules 43

Embedded Voting Documentation, Release 0.1.7

[14]: rule = ev.RuleFeatures()
moving_profile(rule).plot_features_evolution()

4.4.4 More complex profiles

Of course, you can play with more complex profiles, and even change the index of the moving voter.

[15]: scores = np.array([[1, .1, .1, .3], [.1, 1, .1, .3], [.1, .1, 1, .3]])
embs = ev.EmbeddingsGeneratorPolarized(50, 3)(polarisation=.8)
profile = ev.RatingsFromEmbeddingsCorrelated(.8, scores, 3, 4)(embs)

44 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

[16]: embs.plot_candidates(profile)

[17]: moving_profile = ev.MovingVoter(embs)

We now obtain very funny plots for the SVD Rules:

[18]: rule = ev.RuleSVDNash()
moving_profile(rule, profile).plot_scores_evolution()

[19]: rule = ev.RuleSVDSum()
moving_profile(rule, profile).plot_scores_evolution()

4.4. 3. Analysis of the voting rules 45

Embedded Voting Documentation, Release 0.1.7

[20]: rule = ev.RuleSVDMax()
moving_profile(rule, profile).plot_scores_evolution()

46 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

[21]: rule = ev.RuleSVDMin()
moving_profile(rule, profile).plot_scores_evolution()

4.4. 3. Analysis of the voting rules 47

Embedded Voting Documentation, Release 0.1.7

[22]: rule = ev.RuleFeatures()
moving_profile(rule, profile).plot_scores_evolution()

48 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

The features between SVDMax and Features rules are now far more similar:

[23]: rule = ev.RuleSVDMax()
moving_profile(rule, profile).plot_features_evolution()

4.4. 3. Analysis of the voting rules 49

Embedded Voting Documentation, Release 0.1.7

[24]: rule = ev.RuleFeatures()
moving_profile(rule, profile).plot_features_evolution()

4.5 4. Ordinal preferences

In this notebook, we are going to see how to implement an election with ordinal preferences in our model of voters
with embeddings.

An election with ordinal preferences corresponds to an election in which each voter gives a ranking of the candidates

50 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

instead of giving a different score to each candidate. It has been studied a lot and many rules exists for this model
(Plurality, Borda, k-approval, Condorcet, Instand Runoff, Maximin, etc.).

[1]: import embedded_voting as ev
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(442)

4.5.1 Classic election

Let’s run an election with 5 candidates and 100 voters. We obtain the following profile:

[2]: n_voters = 100
n_candidates = 5
n_dimensions = 3

embeddingsGen = ev.EmbeddingsGeneratorPolarized(n_voters, n_dimensions)
ratingsGen = ev.RatingsFromEmbeddingsCorrelated(coherence=0.6, n_dim=n_dimensions, n_
→˓candidates=n_candidates)

embeddings = embeddingsGen(polarisation=0.5)
profile = ratingsGen(embeddings)

embeddings.plot_candidates(profile, "3D")
embeddings.plot_candidates(profile, "ternary")

[3]: election = ev.RuleSVDNash()
election(profile, embeddings)

[3]: <embedded_voting.rules.singlewinner_rules.rule_svd_nash.RuleSVDNash at 0x19b7b143240>

We can also print all the information about the results of this rule:

[4]: print('Scores : ', election.scores_)
print('Ranking : ', election.ranking_)
print('Winner : ', election.winner_)
print('Welfare : ', election.welfare_)

4.5. 4. Ordinal preferences 51

Embedded Voting Documentation, Release 0.1.7

Scores : [53.97439136824531, 47.0012710723997, 27.897020264969875, 54.46431821175544,
→˓ 63.55019310806972]
Ranking : [4, 3, 0, 1, 2]
Winner : 4
Welfare : [0.7314179643431743, 0.5358359238181288, 0.0, 0.7451594298129144, 1.0]

4.5.2 Positional scoring rules

Now, let’s assume that instead of asking a score vector to each voter, we ask for a ranking of the candidate, and apply
some rule with all the rankings.

A broad family of rule are positional scoring rule. A positional scoring rule is characterized by a vector 𝑝 =
(𝑝1, . . . , 𝑝𝑚) such that each voter 𝑣𝑖 gives 𝑝𝑗 points to the voters with rank 𝑗. The winner is the candidate with
the maximum total score.

We can adapt this idea to scores between 0 and 1 by setting the score given by the voter 𝑣𝑖 to candidate 𝑐𝑗 as 𝑝𝑘

𝑝𝑛
if the

candidate 𝑐𝑗 is ranked at position 𝑘 in the ranking of 𝑣𝑖.

For instance, if the positional scoring rule is (2, 1, 1, 1, 0), each voter gives a score of 1 to her favorite candidate, 0 to
her least favorite candidate and 1

2 to every other candidate:

[5]: ordinal_election = ev.RulePositional([2, 1, 1, 1, 0], rule=ev.RuleSVDNash())
ordinal_election(profile, embeddings)

[5]: <embedded_voting.rules.singlewinner_rules.rule_positional.RulePositional at
→˓0x19b78b52710>

If we plot the profile of the candidates now, it is very different than before:

[6]: ordinal_election.plot_fake_ratings("3D")
ordinal_election.plot_fake_ratings("ternary")

[7]: print('Scores : ', ordinal_election.score_(1))
print('Ranking : ', ordinal_election.ranking_)
print('Winner : ', ordinal_election.winner_)

52 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

Scores : 36.58919819094699
Ranking : [4, 3, 0, 1, 2]
Winner : 4

Plurality

Plurality is the positional scoring rule defined by the scoring vector (1, 0, . . . , 0). It is equivalent to saying that each
voter only vote for his favorite candidate. We can see that in that case, almost nobody voted for candidate 𝑐4:

[8]: plurality_election = ev.RulePositionalPlurality(n_candidates, rule=ev.RuleSVDNash())
plurality_election(profile, embeddings)
plurality_election.plot_fake_ratings("3D")

[9]: print('Scores : ', plurality_election.scores_)
print('Ranking : ', plurality_election.ranking_)
print('Winner : ', plurality_election.winner_)

Scores : [9.491165112035668, 6.254785145245596, 0j, 5.271663297309905, 19.
→˓956241701329688]
Ranking : [4, 0, 1, 3, 2]
Winner : 4

Veto

The Veto is the opposite of Plurality. In this rule, every voter votes for all candidates but one. That is why it looks
like every candidate is liked by a lot of voters:

[10]: veto_election = ev.RulePositionalVeto(n_candidates, rule=ev.RuleSVDNash())
veto_election(profile, embeddings)
veto_election.plot_fake_ratings("3D")

[11]: print('Scores : ', veto_election.scores_)
print('Ranking : ', veto_election.ranking_)
print('Winner : ', veto_election.winner_)

4.5. 4. Ordinal preferences 53

Embedded Voting Documentation, Release 0.1.7

Scores : [89.53416233306291, 71.28984292198523, 45.10431048514931, 107.
→˓41444287970856, 115.7630932057704]
Ranking : [4, 3, 0, 1, 2]
Winner : 4

k-Approval

K-approval is the rule in between Plurality and Veto. Each voter votes for his k favorite candidates only. For instance,
with 𝑘 = 3 :

[12]: kapp_election = ev.RulePositionalKApproval(n_candidates, k=3, rule=ev.RuleSVDNash())
kapp_election(profile, embeddings)
kapp_election.plot_fake_ratings("3D")

[13]: print('Scores : ', kapp_election.scores_)
print('Ranking : ', kapp_election.ranking_)
print('Winner : ', kapp_election.winner_)

Scores : [54.598541290954344, 34.53096196174671, 4.654730263274076, 59.
→˓83731740897562, 87.9835379096844]
Ranking : [4, 3, 0, 1, 2]
Winner : 4

Borda

Borda use the scoring vector (𝑚− 1,𝑚− 2, . . . , 1, 0) where 𝑚 is the total number of candidates.

[14]: borda_election = ev.RulePositionalBorda(n_candidates, rule=ev.RuleSVDNash())
borda_election(profile, embeddings)
borda_election.plot_fake_ratings("3D")

[15]: print('Scores : ', borda_election.scores_)
print('Ranking : ', borda_election.ranking_)
print('Winner : ', borda_election.winner_)

54 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

Scores : [43.259760423282884, 32.05532869328766, 8.87628566982566, 46.
→˓946353853379726, 66.4341676382639]
Ranking : [4, 3, 0, 1, 2]
Winner : 4

4.5.3 Instant Runoff Voting (IRV)

Finally, we implemented Instant Runoff Voting which is not a positional scoring rule.

In this voting system, at each step, every voter votes for his favorite candidate, and the candidate with the lowest score
is eliminated. Consequently, we perform 𝑚− 1 elections before we can find the winner. The ranking obtained is the
inverse of the order in which the candidates are eliminated.

[16]: irv_election = ev.RuleInstantRunoff(rule=ev.RuleSVDNash())
irv_election(profile, embeddings)

[16]: <embedded_voting.rules.singlewinner_rules.rule_instant_runoff.RuleInstantRunoff at
→˓0x19b7b762748>

[17]: print('Ranking : ', irv_election.ranking_)
print('Winner : ', irv_election.winner_)

Ranking : [4, 0, 1, 3, 2]
Winner : 4

You can see that we can obtain different rankings depending on the ordinal voting rule that we use.

4.6 5. Manipulability analysis

For this project, we also looked at the manipulability of the voting rules we introduced in the previous notebook. More
precisely, we wanted to see if using ordinal extensions with our voting rules would lower the degree of manipulability.

That’s what we are going to see in this notebook, using the case of one of my favorite rules : SVDNash.

We analysed two kinds of manipulation :

• Single-voter manipulation

• Coalition trivial manipulation

I will explain these different manipulations in their respective sections.

[1]: import numpy as np
import embedded_voting as ev
import matplotlib.pyplot as plt
np.random.seed(420)

First of all, we create a random profile with three groups of voter of the same size.

[2]: n_voters = 50
n_candidates = 4
n_dim = 3

embeddingsGenerator = ev.EmbeddingsGeneratorPolarized(n_voters, n_dim)
ratingsGenerator = ev.RatingsFromEmbeddingsCorrelated(coherence=0.2, n_dim = n_dim,
→˓n_candidates = n_candidates)

(continues on next page)

4.6. 5. Manipulability analysis 55

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

embeddings = embeddingsGenerator(polarisation=0.4)
ratings = ratingsGenerator(embeddings)

embeddings.plot_candidates(ratings)

4.6.1 Single-voter manipulation

The single-voter manipulation is easy to understand.

Let’s say the winner of an election is candidate 𝑐𝑤 and some voter 𝑣𝑖 prefers candidate 𝑐𝑗 to 𝑐𝑤 (i.e. 𝑐𝑗 >𝑖 𝑐𝑤). Then,
𝑣𝑖 can manipulate the election by putting 𝑐𝑗 first (even if it’s not his favorite candidate) and 𝑐𝑤 last. More generally,
if 𝑣𝑖 can change his preferences so that 𝑐𝑗 becomes the winner instead of 𝑐𝑤, then 𝑣𝑖 can manipulate the election for
𝑐𝑗 .

The questions we want to ask :

• What proportion of the population can manipulate the election?

• What is the average welfare obtained after manipulation of the election by a voter?

• What is the worst welfare obtained after manipulation of the election by a voter?

No extensions

Let’s create an election using the rule SVDNash. The winner is candidate 𝑐4.

[3]: election = ev.RuleSVDNash()(ratings, embeddings)
print("Winner : ", election.winner_)
print("Ranking : ", election.ranking_)
print("Welfare : ", election.welfare_)

Winner : 3
Ranking : [3, 1, 0, 2]
Welfare : [0.24843681867948134, 0.7504122119950717, 0.0, 1.0]

With the class SingleVoterManipulation, I can answer the different questions about the manipulability.

To do so, when 𝑣𝑖 manipulates as explained above, we only set the score of the candidate 𝑐𝑗 to 1 and every other score
is set to 0. It will work for every monotonic rule (which is the case of every rule we introduced).

For instance, in our election, a lot of the voters can manipulate the election, and the worst welfare that can be attained
is the welfare of candidate 𝑐1, which is ranked second.

56 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

[4]: manipulation = ev.Manipulation(ratings, embeddings, election)
print("Is manipulable : ", manipulation.is_manipulable_)
print("Proportion of manipulators : ", manipulation.prop_manipulator_)
print("Average welfare after manipulation : ", manipulation.avg_welfare_)
print("Worst welfare after manipulation : ", manipulation.worst_welfare_)

Is manipulable : False
Proportion of manipulators : 0.0
Average welfare after manipulation : 1.0
Worst welfare after manipulation : 1.0

Extensions

For ordinal extension (using rankings), we cannot use the above class, because if we set the score of every candidate
to 0, we cannot rank the candidates anymore (they have the same score).

In the general case, we need to test every possible ranking for each voter. However, for some extension (borda,
k-approval, instant runoff), we implemented faster algorithms for this.

For instance, with the Borda extension :

[5]: ordinal_election = ev.RulePositionalBorda(n_candidates, rule=ev.RuleSVDNash())
ordinal_election(ratings, embeddings)
print("Winner : ", ordinal_election.winner_)
print("Ranking : ", ordinal_election.ranking_)
print("Welfare : ", ordinal_election.welfare_)

Winner : 3
Ranking : [3, 1, 0, 2]
Welfare : [0.33549316772419624, 0.7033412728596413, 0.0, 1.0]

Now, if we test the manipulability with SingleVoterManipulationExtension class, we reduce the number of manipula-
tors

[6]: ordinal_manipulation = ev.ManipulationOrdinal(ratings,
embeddings,
rule_positional=ordinal_election,
rule=election)

print("Is manipulable : ", ordinal_manipulation.is_manipulable_)
print("Proportion of manipulators : ", ordinal_manipulation.prop_manipulator_)
print("Average welfare after manipulation : ", ordinal_manipulation.avg_welfare_)
print("Worst welfare after manipulation : ", ordinal_manipulation.worst_welfare_)

Is manipulable : False
Proportion of manipulators : 0.0
Average welfare after manipulation : 1.0
Worst welfare after manipulation : 1.0

However, the above cell takes a lot of time (around 15 seconds). Using the specific class SingleVoterManipulation-
Borda, this computation time can be reduced to 0.5 seconds.

[7]: borda_manipulation = ev.ManipulationOrdinalBorda(ratings,
embeddings,
rule=election)

print(borda_manipulation.extended_rule)
print("Is manipulable : ", borda_manipulation.is_manipulable_)

(continues on next page)

4.6. 5. Manipulability analysis 57

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

print("Proportion of manipulators : ", borda_manipulation.prop_manipulator_)
print("Average welfare after manipulation : ", borda_manipulation.avg_welfare_)
print("Worst welfare after manipulation : ", borda_manipulation.worst_welfare_)

<embedded_voting.rules.singlewinner_rules.rule_positional_borda.RulePositionalBorda
→˓object at 0x0000023B6FCD2E80>
Is manipulable : False
Proportion of manipulators : 0.0
Average welfare after manipulation : 1.0
Worst welfare after manipulation : 1.0

Using 3-Approval, we obtain less manipulators

[8]: approval_manipulation = ev.ManipulationOrdinalKApproval(ratings, embeddings, k=3,
→˓rule=election)
print("Is manipulable : ", approval_manipulation.is_manipulable_)
print("Proportion of manipulators : ", approval_manipulation.prop_manipulator_)
print("Average welfare after manipulation : ", approval_manipulation.avg_welfare_)
print("Worst welfare after manipulation : ", approval_manipulation.worst_welfare_)

Is manipulable : False
Proportion of manipulators : 0.0
Average welfare after manipulation : 1.0
Worst welfare after manipulation : 1.0

Using Instant Runoff, the profile is not manipulable

[9]: irv_manipulation = ev.ManipulationOrdinalIRV(ratings, embeddings, rule=election)
print("Is manipulable : ", irv_manipulation.is_manipulable_)
print("Proportion of manipulators : ", irv_manipulation.prop_manipulator_)
print("Average welfare after manipulation : ", irv_manipulation.avg_welfare_)
print("Worst welfare after manipulation : ", irv_manipulation.worst_welfare_)

Is manipulable : False
Proportion of manipulators : 0.0
Average welfare after manipulation : 1.0
Worst welfare after manipulation : 1.0

4.6.2 Coalition manipulation

The second kind of manipulation that is easy to compute and represent is the coalition manipulation. More specifi-
cally, is there a trivial manipulation by a coalition?

Let’s say that the winner of the election is the candidate 𝑐𝑤 and let’s name 𝑉 (𝑗) the group of voters that prefer some
candidate 𝑐𝑗 to the winner 𝑐𝑤:

𝑉 (𝑗) = {𝑣𝑖|𝑐𝑗 >𝑖 𝑐𝑤}

Let’s say now that all these voters set 𝑐𝑗 first and 𝑐𝑤 last. Is 𝑐𝑗 the new winner of the election ? If the answer is yes,
then the profile is manipulable by a trivial coalition.

Obviously, if the profile is manipulable by a single voter, then it is also manipulable by a coalition.

No extensions

When we don’t use any extension, the profile is very manipulable. Indeed, every candidate can be elected after a
trivial manipulation.

58 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

Consequently, the worst Nash welfare attainable is 0.

[10]: manipulation = ev.ManipulationCoalition(ratings, embeddings, election)
print("Is manipulable : ", manipulation.is_manipulable_)
print("Worst welfare after manipulation : ", manipulation.worst_welfare_)

Is manipulable : False
Worst welfare after manipulation : 1.0

Extensions

However, it is a bit better when we use an ordinal extension. You can use the general class ManipulationCoalitionEx-
tension or the specific classes for Borda, k-Approval and Instant runoff. However, they use the same algorithm.

Using Borda extension

[11]: borda_extension = ev.RulePositionalBorda(n_candidates, rule=ev.RuleSVDNash())
borda_manipulation = ev.ManipulationCoalitionOrdinal(ratings, embeddings, borda_
→˓extension, election)
manipulation = ev.ManipulationCoalitionBorda(profile, election)
print("Is manipulable : ", borda_manipulation.is_manipulable_)
print("Worst welfare after manipulation : ", borda_manipulation.worst_welfare_)

Is manipulable : True
Worst welfare after manipulation : 0.7504122119950696

Using 3-Approval

[12]: kapp_manipulation = ev.ManipulationCoalitionOrdinalKApproval(ratings, embeddings, k=3,
→˓ rule=election)
print("Is manipulable : ", kapp_manipulation.is_manipulable_)
print("Worst welfare after manipulation : ", kapp_manipulation.worst_welfare_)

Is manipulable : False
Worst welfare after manipulation : 1.0

Finally, with Instant Runoff voting

[13]: irv_manipulation = ev.ManipulationCoalitionOrdinalIRV(ratings, embeddings,
→˓rule=election)
print("Is manipulable : ", irv_manipulation.is_manipulable_)
print("Worst welfare after manipulation : ", irv_manipulation.worst_welfare_)

Is manipulable : False
Worst welfare after manipulation : 1.0

4.6.3 Manipulation maps

However, we cannot really judge a rule or an extension on one example. That’s why we propose functions to show
manipulation maps for some rule.

A map consists of an image of size 𝑠 × 𝑠 such that each pixel represents one test. A dark pixel represents a 0 and a
yellow pixel represents a 1.

Moreover, we use a parametric profile for each test and we vary the orthogonality and the correlation of the para-
metric profiles for each test: The more the pixel is on the right, the higher the correlation, and the more the pixel is on
the top, the higher the orthogonality.

For each test, a new scores_matrix is randomly generated for the parametric profile.

4.6. 5. Manipulability analysis 59

Embedded Voting Documentation, Release 0.1.7

No extensions

For instance, if we do not use extensions, we can see that the profiles are not very manipulable by single-voters, and
when this is the case, the worst Nash welfare is high.

[14]: manipulation = ev.Manipulation(ratings, embeddings, election)
res = manipulation.manipulation_map(map_size=25)

You can find the data used in the manipulation maps in the output of the function manipulation_map().

[15]: res.keys()

[15]: dict_keys(['manipulator', 'worst_welfare', 'avg_welfare'])

However, almost every profile is manipulable by trivial coalitions, and often the worst Nash welfare is 0:

[16]: manipulation = ev.ManipulationCoalition(ratings, embeddings, election)
res = manipulation.manipulation_map(map_size=25)

Again, the output of the function contains the data of the manipulation maps.

60 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

[17]: res.keys()

[17]: dict_keys(['manipulator', 'worst_welfare'])

Borda

With Borda, we improve a little bit the resistance to manipulation by coalition. However, we decrease the resistance
to manipulation by a single-voter.

[18]: borda_manipulation = ev.ManipulationOrdinalBorda(ratings, embeddings, rule=election)
res = borda_manipulation.manipulation_map(map_size=25)

[19]: borda_manipulation = ev.ManipulationCoalitionOrdinalBorda(ratings, embeddings,
→˓election)
res = borda_manipulation.manipulation_map(map_size=25)

4.6. 5. Manipulability analysis 61

Embedded Voting Documentation, Release 0.1.7

IRV

With Instant Runoff, we increase by a lot the resistance to manipulation by coalition without altering the resistance
to manipulation by a single voter.

[20]: irv_manipulation = ev.ManipulationOrdinalIRV(ratings, embeddings, rule=election)
res = irv_manipulation.manipulation_map(map_size=25)

[21]: irv_manipulation = ev.ManipulationCoalitionOrdinalIRV(ratings, embeddings, election)
res = irv_manipulation.manipulation_map(map_size=25)

change map size

You can also plot more detailed manipulation maps by changing the map_size parameter.

[22]: irv_manipulation = ev.ManipulationCoalitionOrdinalIRV(ratings, embeddings, election)
res = irv_manipulation.manipulation_map(map_size=100)

62 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

With particular scores matrix

In the previous plots, we changed the scores_matrix for each test (consequently, for each dot). You can modify that by
specifying a matrix in the parameters of the function. It will use it for every test.

For instance, for Instant Runoff, you can see that the manipulation map heavily rely on this matrix: For some of
them, there is a dark spot in the upper right corner (high correlation and high orthogonality).

[23]: irv_manipulation = ev.ManipulationCoalitionOrdinalIRV(ratings, embeddings, election)
fig = plt.figure(figsize=(25, 10))
map_size = 25
for i in range(10):

res = irv_manipulation.manipulation_map(map_size=map_size, ratings_dim_
→˓candidate=np.random.rand(3, 4), show=False)

image = res['worst_welfare']
ev.create_map_plot(fig, image, [2, 5, i+1], "Worst welfare")

4.6. 5. Manipulability analysis 63

Embedded Voting Documentation, Release 0.1.7

4.7 6. Multi-winner elections

We’ve already seen how to run a single-winner election with embedded voters. Now, I will explain how you can
simulate multi-winner election on this framework.

I will explain in detail what you can do with the multi-winner rules IterSVD() and IterFeatures(). If you are interested
and want to implement your own multi-winner rule, you can check the doc and the code for the class IterRule().

[1]: import embedded_voting as ev
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(42)

4.7.1 Create the profile

You should start to be familiar with this part of the notebook. As always, we are creating a profile of embedded
voters. This time, we have 20 candidates instead of 5, because it enables us to see what our multi-winner rules really
do.

To do so, I simply use the candidates from the profile of the Notebook 2, and duplicate them 3 times. The profile is as
follows :

• The red group contains 50% of the voters, and the average scores of candidates given by this group are
[0.9, 0.3, 0.5, 0.2, 0.2].

• The green group contains 30% of the voters, and the average scores of candidates given by this group are
[0.2, 0.6, 0.5, 0.3, 0.9].

• The blue group contains 20% of the voters, and the average scores of candidates given by this group are
[0.2, 0.6, 0.5, 0.9, 0.3].

In that way, candidates (0, 5, 10, 15) are candidates of the red group, candidates (4, 9, 14, 19) are candidates of the
green group, candidates (3, 8, 13, 18) are candidates of the blue group, and all other candidates are more “consen-
sual”.

In the following cell, I create my profile using ParametricProfile():

64 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

[2]: scores_matrix_bloc = np.array([[.9, .3, .5, .3, .2], [.2, .6, .5, .3, .9], [.2, .6, .
→˓5, .9, .3]])
scores_matrix = np.concatenate([scores_matrix_bloc]*4, 1)

proba = [.5, .3, .2]

n_voters = 100
n_dimensions, n_candidates = np.array(scores_matrix).shape
embeddingsGen = ev.EmbeddingsGeneratorPolarized(n_voters, n_dimensions, proba)
ratingsGen = ev.RatingsFromEmbeddingsCorrelated(0.8, scores_matrix, n_dimensions,n_
→˓candidates)

embeddings = embeddingsGen(polarisation=0.6)
profile = ratingsGen(embeddings)

The following cell displays the profile distribution:

[3]: fig = plt.figure(figsize=(15,7.5))
embeddings.plot("3D", fig=fig, plot_position=[1,2,1], show=False)
embeddings.plot("ternary", fig=fig, plot_position=[1,2,2], show=False)
plt.show()

This cell displays the candidates. You can see that each column contains very similar candidates.

[4]: embeddings.plot_candidates(profile, "3D")

4.7. 6. Multi-winner elections 65

Embedded Voting Documentation, Release 0.1.7

4.7.2 How IterRule work (a bit of theory)

Our goal was to elaborate rules that respects the proportionality with respect to both the scores and the embeddings
of the voters. That means that if a group of voter with similar embeddings represent 25% of the population, 25% of
the winning committee should be composed of their favorite candidates

To do so, we implemented an adaptation of Single Transferable Vote (STV) to profiles with embedded voters.

First, some notations :

66 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

Notations Meaning
𝑣𝑖 The 𝑖𝑡ℎ voter
𝑐𝑗 The 𝑗𝑡ℎ candidate
𝑠𝑖(𝑐𝑗) The score given by the voter 𝑣𝑖 to the candidate 𝑐𝑗
𝑀 The embeddings matrix, such that 𝑀𝑖 are the embeddings of 𝑣𝑖
𝑘 The size of the winning committee

0 ≤ 𝑡 < 𝑘

The iteration number

𝑤𝑖(𝑡) The weight of the voter 𝑣𝑖 at time 𝑡
𝑊 (𝑡) The 𝑡𝑡ℎ candidate of the winning committee
𝑠𝑎𝑡𝑖(𝑡) The satisfaction of voter 𝑣𝑖 with candidate 𝑊 (𝑡)

The rules we are using in this notebook are following this algorithm:

• At the initialization, the weight of all voters is equal to 𝑤𝑖(0) = 1.

• At each step 𝑡 ∈ [0, 𝑘 − 1[:

– Apply a voting rule on the profile defined by the scores (𝑤𝑖 × 𝑠𝑖) and the embeddings matrix 𝑀 . The
voting rule should return a score and a feature vector for each candidate. Select the candidate 𝑐 not yet
in the committee with the maximum score. This will be the winner 𝑊 (𝑡). Let’s denote 𝑣(𝑡) the feature
vector of this candidate.

– We compute the satisfaction of every voter with the new candidate, which is defined as

𝑠𝑖(𝑊 (𝑡))× cos(𝑣(𝑡),𝑀𝑖)

where cos is the cosine similarity. Therefore, a voter with embeddings close to the candidate’s features will be
more satisfied than a candidate orthogonal to the features of the candidate.

– Update the weights of the voters according to their level of satisfaction. The sum of all the removed
weights should be equal to a quota of voter, for instance 𝑛

𝑘 .

At the end, the weights of all voters should be close to 0.

In this notebook, I will present two rules based on this algorithm : IterSVD and IterFeatures.

• IterSVD uses a SVD based rule presented on the notebook 2 to determine the scores of the candidates. The
feature vector is the vector of the SVD associated to the largest singular value. A very well-suited aggregation
function to achieve proportionnality is the maximum function.

• IterFeatures is based on the Features rule presented on the notebook 2. The notion of feature vector in that case
is straightforward.

Now, let’s see how it works!

4.7.3 Run an election

The following cell shows how you instantiate a multi-winner election.

Here we want a committee of size 𝑘 = 5 and we are using the classic method of quota (see next section).

[5]: election = ev.MultiwinnerRuleIterSVD(k=5, quota="classic")
election(profile, embeddings)

4.7. 6. Multi-winner elections 67

Embedded Voting Documentation, Release 0.1.7

[5]: <embedded_voting.rules.multiwinner_rules.multiwinner_rule_iter_svd.
→˓MultiwinnerRuleIterSVD at 0x20aa08c0f28>

You can immediately print and plot the winning committee.

In our case, the committee contains 3 candidates of the red group, 2 candidates of the green group and 0 of the blue
group. This gives us proportion of (40%, 40%, 20%) instead of the correct proportionality (60%, 40%, 0%).

[6]: print("Winners : ",election.winners_)
election.plot_winners()

Winners : [5, 18, 19, 15, 3]

The following cell shows how to plot the evolution of the voters’ weights with time. The black vector represents the
feature vector of the candidate selected at this step.

For instance, the first candidate is liked by the red group, so its vector is very similar to the vectors of voters in this
group, and you can see that the weight of every voter of this group is reduced during step 2.

[7]: election.plot_weights(row_size=6)

Weight / remaining candidate : [20.0, 20.0, 20.000000000000004, 20.000000000000004,
→˓20.000000000000014]

4.7.4 Changing some parameters

You can change the method of quota using the function set_quota(). There are two possible quotas:

• Classic quota 𝑄 = 𝑛
𝑘 .

• Droop quota 𝑄 = 𝑛
𝑘+1 + 1.

However, there is not a big difference between the results if we use on quota or another. For instance, with 𝑘 = 5, we
obtain the same committee as before:

[8]: election.set_quota("droop")
print("Winners : ",election.winners_)
election.plot_winners()

Winners : [5, 18, 19, 15, 3]

68 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

You can also change parameters related to the SVD, for instance the square_root parameter, which can influence the
results.

Indeed, as you can see on the following cell, when we are not using the square root of the score, we give more
opportunities to small groups (like the group of blue voters).

[9]: election = ev.MultiwinnerRuleIterSVD(k=5, quota="classic", square_root=False)
election(profile, embeddings)
print("Winners : ",election.winners_)
election.plot_winners()

Winners : [5, 19, 3, 15, 14]

4.7.5 Changing the size of the committee

You can change the size of the winning committee, by calling the function set_k().

As you can see, if we set the size of the committee to 𝑘 = 11 candidates, There are 4 candidates of the red group (that
is the maximum possible), there are also 4 candidates of the green group, and 2 candidates of the blue group. The
last candidate (actually Winner 10) is a consensual candidate.

The proportions obtained are close to the real proportions (50%, 30%, 20%).

[10]: election = ev.MultiwinnerRuleIterSVD()
election(profile, embeddings)
election.set_k(11)
print("Winners : ",election.winners_)
election.plot_winners()

Winners : [5, 10, 18, 19, 15, 3, 14, 0, 8, 9, 7]

4.7. 6. Multi-winner elections 69

Embedded Voting Documentation, Release 0.1.7

As before, we can display the evolutions of the weights of the voters, with the feature of the selected candidate at each
step in black. In the end, all weights are almost 0.

[11]: election.plot_weights(row_size=6)

Weight / remaining candidate : [9.090909090909092, 9.09090909090909, 9.
→˓090909090909092, 9.09090909090909, 9.090909090909092, 9.090909090909092, 9.
→˓09090909090909, 9.09090909090909, 9.090909090909088, 9.090909090909088, 9.
→˓090909090909085]

4.7.6 Using other SVD Rules

You can use another rule than the maximum for the IterSVD() function. However, the maximum is well suited for
proportionality, which is not the case for other aggregation functions. For instance, with the product, we only obtain
consensual candidates, as it is shown in the following cell:

70 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

[12]: election = ev.MultiwinnerRuleIterSVD(k=6, quota="classic", aggregation_rule=np.prod)
election(profile, embeddings)
print("Winners : ",election.winners_)
election.plot_winners(row_size=6)

Winners : [7, 2, 17, 6, 1, 12]

[13]: election.plot_weights(row_size=7)

Weight / remaining candidate : [16.666666666666668, 16.666666666666664, 16.
→˓666666666666664, 16.666666666666664, 16.666666666666664, 16.666666666666654]

4.7.7 IterSVD versus IterFeatures

Everything I explained earlier for IterSVD also works for IterFeatures. Let’s see how the two rules compare on some
examples:

[14]: election_svd = ev.MultiwinnerRuleIterSVD(k=5)
election_features = ev.MultiwinnerRuleIterFeatures(k=5)

election_svd(profile, embeddings)
election_features(profile, embeddings)

[14]: <embedded_voting.rules.multiwinner_rules.multiwinner_rule_iter_features.
→˓MultiwinnerRuleIterFeatures at 0x20a9c67e860>

With 𝑘 = 5, the proportions achieved by IterFeatures are (40%, 40%, 20%), which is more egalitarian than the
(60%, 40%, 0%) achieved by IterSVD.

It is due to the fact that IterSVD takes into account the size of each each group to choose a winner but not IterFeatures.
For the latter, the size of the group only appears when we update the weights of the voters.

[15]: print("Winners (SVD) : ",election_svd.winners_)
election_svd.plot_winners()
print("Winners (Features) : ",election_features.winners_)
election_features.plot_winners()

Winners (SVD) : [5, 18, 19, 15, 3]

4.7. 6. Multi-winner elections 71

Embedded Voting Documentation, Release 0.1.7

Winners (Features) : [19, 5, 3, 10, 14]

It is even clearer with 𝑘 = 11. As you can see in the following cells, the first two candidates selected by IterFeatures
are a green candidate and a blue candidate, even if the red group is the biggest.

[16]: election_svd.set_k(11)
election_features.set_k(11)

[16]: <embedded_voting.rules.multiwinner_rules.multiwinner_rule_iter_features.
→˓MultiwinnerRuleIterFeatures at 0x20a9c67e860>

[17]: print("Winners (SVD) : ",election_svd.winners_)
election_svd.plot_winners(row_size=6)
print("Winners (Features) : ",election_features.winners_)
election_features.plot_winners(row_size=6)

Winners (SVD) : [5, 10, 18, 19, 15, 3, 14, 0, 8, 9, 7]

Winners (Features) : [19, 3, 5, 14, 15, 18, 10, 9, 13, 0, 4]

72 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

[18]: print("IterSVD")
election_svd.plot_weights(row_size=6, verbose=False)
print("IterFeatures")
election_features.plot_weights(row_size=6, verbose=False)

IterSVD

IterFeatures

4.7. 6. Multi-winner elections 73

Embedded Voting Documentation, Release 0.1.7

4.8 7. Algorithms aggregation

In this notebook we will compare the different voting rules on an online learning scenario. We have different aggre-
gators with different scoring rules, and each aggregator start with 0 training data. Then each aggregator use the data
from the successive aggregations to train the embeddings.

[1]: import numpy as np
import embedded_voting as ev
import matplotlib.pyplot as plt
from tqdm import tqdm
np.random.seed(42)

We will comapre 5 rules : FastNash, FastSum, SumScores, ProductScores, MLEGaussian

[2]: def create_f(A):
def f(ratings_v, history_mean, history_std):

return np.sqrt(np.maximum(0, A + (ratings_v - history_mean) / history_std))
return f

[3]: list_agg = [ev.Aggregator(rule=ev.RuleFastNash(f=create_f(0)),name="RuleFastNash"),
ev.AggregatorFastSum(),
ev.AggregatorSumRatings(),
ev.AggregatorProductRatings(),
ev.AggregatorMLEGaussian()]

For the generator, we use a model with 30 algorithms in the same group 𝐺1, 2 algorithms in agroup 𝐺2 and 5 algorithms
between the two (but closer to 𝐺2)

[4]: groups_sizes = [30, 2, 5]
features = [[1, 0], [0, 1], [0.3,0.7]]

generator = ev.RatingsGeneratorEpistemicGroupsMix(groups_sizes, features, group_
→˓noise=8, independent_noise=0.5)
generator.plot_ratings()

74 Chapter 4. Tutorials

Embedded Voting Documentation, Release 0.1.7

[5]: onlineLearning = ev.OnlineLearning(list_agg, generator)

Each election contains 20 alternatives, we run 50 successive elections for each experiment and run this 1000 times.

[6]: n_candidates = 20
n_steps = 50
n_try = 1000
onlineLearning(n_candidates, n_steps, n_try)

100%|| 1000/1000 [57:38<00:00, 3.46s/it]

Finally, we can display the result of the experiment

[7]: onlineLearning.plot()

4.8. 7. Algorithms aggregation 75

Embedded Voting Documentation, Release 0.1.7

76 Chapter 4. Tutorials

CHAPTER 5

IJCAI

You can find here the notebooks used to produce the experiments of the paper submitted to IJCAI.

5.1 Reference Scenario

The following packages are required to run this notebook. If you miss one, please install them, e.g. with pip.

[1]: import numpy as np
import dill as pickle
import matplotlib.pyplot as plt
from tqdm import tqdm
import tikzplotlib
from multiprocess.pool import Pool

Our own module (use pip install -e . from the source folder to install it).

[2]: import embedded_voting as ev # Our own module

Direct load of some useful variables and functions.

[3]: from embedded_voting.experiments.aggregation import make_generator, make_aggs, f_max,
→˓f_renorm
from embedded_voting.experiments.aggregation import handles, colors, evaluate,
→˓default_order

5.1.1 Building Data

We first create the data for the reference scenario and the first experiments showed in the paper. In particular, we
consider more agents and candidates per election than required.

In details:

• We create data for 10 000 simulations of decision.

77

Embedded Voting Documentation, Release 0.1.7

• Each decision problem (a.k.a. election) involves 50 candidates each.

• Each election has 50 estimators (voters): 30 in one correlated group and 20 independent estimators.

For the reference scenario, only the first 20 candidates are considered, and only 24 estimators indexed from 10 to 34,
giving 20 in the same group and 4 independents (the rest of the data is used in variations of this scenario).

The feature noise is a normal noise of standard deviation 1, while the distinct noise has standard deviation 0.1. The
score generator (for the true score of the candidate) also follows a normal law of standard deviation 1.

The parameters:

[4]: n_tries = 10000 # Number of simulations
n_training = 1000 # Number of training samples for trained rules
n_c = 50
groups = [30]+[1]*20

The generator of estimations, from the generator class of our package:

[5]: generator = make_generator(groups=groups)

We create the datasets

[6]: data = {
'training': generator(n_training),
'testing': generator(n_tries*n_c).reshape(sum(groups), n_tries, n_c),
'truth': generator.ground_truth_.reshape(n_tries, n_c)

}

We save them for further use later.

[7]: with open('base_case_data.pkl', 'wb') as f:
pickle.dump(data, f)

5.1.2 Computation

We extract what we need from the dataset: 24 estimators (20+4x1) and 20 candidates.

[8]: n_c = 20
groups = [20] + [1]*4
n_v = sum(groups)
voters = slice(30-groups[0], 30+len(groups)-1)
training = data['training'][voters, :]
testing = data['testing'][voters, :, :n_c]
truth = data['truth'][:, :n_c]

We define the list of rules we want to compare. For the reference scenario we add the Random rule.

[9]: list_agg = make_aggs(groups, order=default_order+['Rand'])

We run the aggregation methods on all the 10 000 simulations, compute the average, and save the results.

[10]: with Pool() as p:
res = evaluate(list_agg=list_agg, truth=truth, testing=testing, training=training,

→˓ pool=p)

100%|| 10000/10000 [00:49<00:00, 201.93it/s]

We save the results.

78 Chapter 5. IJCAI

Embedded Voting Documentation, Release 0.1.7

[11]: with open('base_case_results.pkl', 'wb') as f:
pickle.dump(res, f)

5.1.3 Display

We create a figure and export it.

[12]: n_agg = len(res)

plt.figure(figsize=(10,5))
for i in range(n_agg):

name = list_agg[i].name
plt.bar(i, res[i],color=colors[name])

plt.xticks(range(n_agg), [handles[agg.name] for agg in list_agg], rotation=45)
plt.xlim(-0.5,n_agg-0.5)
plt.ylabel("Average relative utility")
plt.ylim(0.4)
tikzplotlib.save("basecase.tex")

save figure
plt.savefig("basecase.png", dpi=300, bbox_inches='tight')
plt.show()

5.2 Impact of Numerical Parameters

This notebook investigates how the reference scenario evolves if we change: - The number of correlated agents. - The
number of independent agents. - The number of candidates. - The number of training samples for trained aggregators.

The common point between the four studies above is that we use the same drawings of utilities and estimates. For
example, an experiment with 40 candidates will share the exact same 20 first candidates than an experiment with 20

5.2. Impact of Numerical Parameters 79

Embedded Voting Documentation, Release 0.1.7

candidates only.

First we load some packages and the dataset built in the reference scenario notebook, which contains all inputs required
for the analysis presented in this notebook.

[1]: import numpy as np
import dill as pickle
import matplotlib.pyplot as plt
from tqdm import tqdm
import tikzplotlib
from multiprocess.pool import Pool

[2]: import embedded_voting as ev # Our own module

Direct load of some useful variables and functions.

[3]: from embedded_voting.experiments.aggregation import make_generator, make_aggs, f_max,
→˓f_renorm
from embedded_voting.experiments.aggregation import handles, colors, evaluate,
→˓default_order

[4]: with open('base_case_data.pkl', 'rb') as f:
data = pickle.load(f)

5.2.1 Correlated Agents

Computation

[5]: n_c = 20
cor_size = [1] + [i for i in range(2, 31, 2)]

res = np.zeros((9,len(cor_size)))
with Pool() as p:

for j, s in enumerate(cor_size):
groups = [s] + [1]*4
voters = slice(30-groups[0], 30+len(groups)-1)
training = data['training'][voters, :]
testing = data['testing'][voters, :, :n_c]
truth = data['truth'][:, :n_c]

list_agg = make_aggs(groups)
res[:, j] = evaluate(list_agg=list_agg, truth=truth, testing=testing,

→˓training=training, pool=p)

100%|| 10000/10000 [00:11<00:00, 885.54it/s]
100%|| 10000/10000 [00:08<00:00, 1202.57it/s]
100%|| 10000/10000 [00:08<00:00, 1143.43it/s]
100%|| 10000/10000 [00:09<00:00, 1066.39it/s]
100%|| 10000/10000 [00:10<00:00, 994.11it/s]
100%|| 10000/10000 [00:10<00:00, 957.09it/s]
100%|| 10000/10000 [00:11<00:00, 880.80it/s]
100%|| 10000/10000 [00:12<00:00, 800.92it/s]
100%|| 10000/10000 [00:12<00:00, 801.31it/s]
100%|| 10000/10000 [00:13<00:00, 764.85it/s]
100%|| 10000/10000 [00:13<00:00, 715.41it/s]

(continues on next page)

80 Chapter 5. IJCAI

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

100%|| 10000/10000 [00:14<00:00, 672.15it/s]
100%|| 10000/10000 [00:15<00:00, 655.62it/s]
100%|| 10000/10000 [00:16<00:00, 613.33it/s]
100%|| 10000/10000 [00:17<00:00, 579.84it/s]
100%|| 10000/10000 [00:18<00:00, 536.30it/s]

We save the results.

[6]: with open('correlated_agents.pkl', 'wb') as f:
pickle.dump(res, f)

Display

[7]: plt.figure(figsize=(10,5))
for i, agg in enumerate(list_agg):

plt.plot(cor_size, res[i], "o-", color=colors[agg.name], label=handles[agg.name],
linewidth=2, markersize=2)

plt.legend()
plt.xlabel("Size of the correlated group")
plt.ylabel("Average relative utility")
plt.xticks(range(5,31,5), range(5,31,5))
plt.xlim(1,30)
plt.grid()
tikzplotlib.save("correlated_agents.tex", axis_height ='6cm', axis_width ='8cm')
save figure
plt.savefig("correlated_agents.png", dpi=300)
plt.show()

5.2.2 Independent Agents

5.2. Impact of Numerical Parameters 81

Embedded Voting Documentation, Release 0.1.7

Computation

[8]: ind_size = [0, 1] + [i for i in range(2, 21, 2)]
res = np.zeros((9,len(ind_size)))

[9]: with Pool() as p:
for j, indep in enumerate(ind_size):

groups = [20] + [1]*indep
voters = slice(30-groups[0], 30+len(groups)-1)
training = data['training'][voters, :]
testing = data['testing'][voters, :, :n_c]
truth = data['truth'][:, :n_c]

list_agg = make_aggs(groups)
res[:, j] = evaluate(list_agg=list_agg, truth=truth, testing=testing,

→˓training=training, pool=p)

100%|| 10000/10000 [00:15<00:00, 663.77it/s]
100%|| 10000/10000 [00:12<00:00, 806.14it/s]
100%|| 10000/10000 [00:12<00:00, 788.17it/s]
100%|| 10000/10000 [00:13<00:00, 740.03it/s]
100%|| 10000/10000 [00:14<00:00, 685.59it/s]
100%|| 10000/10000 [00:15<00:00, 666.25it/s]
100%|| 10000/10000 [00:15<00:00, 627.06it/s]
100%|| 10000/10000 [00:16<00:00, 595.24it/s]
100%|| 10000/10000 [00:17<00:00, 558.29it/s]
100%|| 10000/10000 [00:18<00:00, 532.86it/s]
100%|| 10000/10000 [00:19<00:00, 511.57it/s]
100%|| 10000/10000 [00:20<00:00, 491.89it/s]

We save the results.

[10]: with open('independent_agents.pkl', 'wb') as f:
pickle.dump(res, f)

Display

[11]: plt.figure(figsize=(10,5))
for i, agg in enumerate(list_agg):

plt.plot(ind_size, res[i], "o-", color=colors[agg.name], label=handles[agg.name],
linewidth=2, markersize=2)

plt.legend()
plt.xlabel("Number of independent agents")
plt.ylabel("Average relative utility")
plt.xticks(range(0,21,5), range(0,21,5))
plt.xlim(0,20)
plt.ylim(0.5)
plt.grid()
tikzplotlib.save("independents_agents.tex", axis_height ='6cm', axis_width ='8cm')
save figure
plt.savefig("independents_agents.png", dpi=300)
plt.show()

82 Chapter 5. IJCAI

Embedded Voting Documentation, Release 0.1.7

5.2.3 Candidates

Computation

[12]: cand_size = [2,3,4,5,10,15,20,25,30,35,40,45,50]
res = np.zeros((9,len(cand_size)))

[13]: groups = [20] + [1]*4
voters = slice(30-groups[0], 30+len(groups)-1)
with Pool() as p:

for j, n_c in enumerate(cand_size):
training = data['training'][voters, :]
testing = data['testing'][voters, :, :n_c]
truth = data['truth'][:, :n_c]
list_agg = make_aggs()
res[:, j] = evaluate(list_agg=list_agg, truth=truth, testing=testing,

→˓training=training, pool=p)

100%|| 10000/10000 [00:12<00:00, 774.52it/s]
100%|| 10000/10000 [00:10<00:00, 976.28it/s]
100%|| 10000/10000 [00:10<00:00, 960.23it/s]
100%|| 10000/10000 [00:10<00:00, 958.54it/s]
100%|| 10000/10000 [00:11<00:00, 886.43it/s]
100%|| 10000/10000 [00:12<00:00, 805.59it/s]
100%|| 10000/10000 [00:13<00:00, 740.61it/s]
100%|| 10000/10000 [00:14<00:00, 678.46it/s]
100%|| 10000/10000 [00:15<00:00, 636.49it/s]
100%|| 10000/10000 [00:18<00:00, 552.78it/s]
100%|| 10000/10000 [00:17<00:00, 556.79it/s]
100%|| 10000/10000 [00:19<00:00, 525.67it/s]
100%|| 10000/10000 [01:10<00:00, 141.72it/s]

We save the results.

5.2. Impact of Numerical Parameters 83

Embedded Voting Documentation, Release 0.1.7

[14]: with open('candidates.pkl', 'wb') as f:
pickle.dump(res, f)

Display

[15]: plt.figure(figsize=(10,5))
for i, agg in enumerate(list_agg):

plt.plot(cand_size, res[i], "o-", color=colors[agg.name], label=handles[agg.name],
linewidth=2, markersize=2)

plt.legend()
plt.xlabel("Number of candidates m")
plt.ylabel("Average relative utility")
plt.xticks(range(0,51,10), range(0,51,10))
plt.yticks([0.7,0.8,0.9], [0.7,0.8,0.9])
plt.xlim(2,50)
plt.ylim(0.6)
plt.grid()
tikzplotlib.save("candidates.tex", axis_height ='6cm', axis_width ='8cm')
save figure
plt.savefig("candidates.png", dpi=300)
plt.show()

5.2.4 Training Size

Note: due to space constraints, the following analysis, which studies the convergence speed of training for EV+ and
PL+, is not reported in the paper.

84 Chapter 5. IJCAI

Embedded Voting Documentation, Release 0.1.7

Computation

[16]: from copy import copy
train_size = [0,20,40,60,100,140,300,620,1260]
results = np.zeros((2,len(train_size)))
n_c = 20

for j, train in enumerate(train_size):
training = data['training'][voters, :train]
testing = data['testing'][voters, :, :n_c]
truth = data['truth'][:, :n_c]
n_tries = testing.shape[1]

list_agg = [ev.Aggregator(rule=ev.RuleRatingsHistory(rule=ev.RuleMLEGaussian(),
→˓f=f_renorm),

name="PL+"),
ev.Aggregator(rule=ev.RuleFastNash(), name="EV+")]

if training.shape[1]:
for i in range(2):

_ = list_agg[i](training).winner_

sa = groups[0]-1 # index of the last agent from the group
We run the simulations
for index_try in tqdm(range(n_tries)):

ratings_candidates = testing[:, index_try, :]
Welfare
welfare = ev.RuleSumRatings()(ev.Ratings([truth[index_try, :]])).welfare_
We run the aggregators, and we look at the welfare of the winner
for k,agg in enumerate(list_agg):

agg2 = copy(agg)
w = agg2(ratings_candidates).winner_
results[k, j] += welfare[w]

res = results/n_tries

100%|| 10000/10000 [00:31<00:00, 319.79it/s]
100%|| 10000/10000 [00:32<00:00, 310.74it/s]
100%|| 10000/10000 [00:39<00:00, 250.68it/s]
100%|| 10000/10000 [00:40<00:00, 245.43it/s]
100%|| 10000/10000 [00:42<00:00, 235.20it/s]
100%|| 10000/10000 [00:51<00:00, 192.86it/s]
100%|| 10000/10000 [01:11<00:00, 140.22it/s]
100%|| 10000/10000 [03:10<00:00, 52.43it/s]
100%|| 10000/10000 [06:01<00:00, 27.63it/s]

We save the results.

[17]: with open('training.pkl', 'wb') as f:
pickle.dump(res, f)

Display

[18]: plt.figure(figsize=(10,5))
for i, agg in enumerate(list_agg):

plt.plot([x+20 for x in train_size], res[i], "o-", color=colors[agg.name],

(continues on next page)

5.2. Impact of Numerical Parameters 85

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

label=handles[agg.name], linewidth=2, markersize=2)

for i, agg in enumerate(list_agg):
plt.plot([x+20 for x in train_size], [res[i][0]]*len(train_size), "--",

color=colors[agg.name[:2]], label=handles[agg.name[:2]])

plt.legend()
plt.xlabel("Size of the training set\\\\(including candidates from the current
→˓decision)")
plt.ylabel("Average relative utility")
plt.xscale("log")
plt.xticks([x+20 for x in train_size], [x+20 for x in train_size])
plt.yticks([0.8,0.85,0.9,0.95], [0.8,0.85,0.9,0.95])
plt.xlim(20,1260)
plt.ylim(0.5)
plt.grid()
tikzplotlib.save("training.tex")
save figure
plt.savefig("training.png", dpi=300)
plt.show()

We can see that, at least in the reference scenario, EV+ doesn’t actually need to be trained. PL+ does.

5.3 Changing Noises

This notebook investigates how the reference scenario evolves if we change: - The intensities of feature and distinct
noises. - The shape of the distribution used to draw candidate utilities, feature noises, and distinct noises.

[1]: import numpy as np
import dill as pickle
import matplotlib.pyplot as plt

(continues on next page)

86 Chapter 5. IJCAI

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

from tqdm import tqdm
import tikzplotlib
from multiprocess.pool import Pool

[2]: import embedded_voting as ev # Our own module

Direct load of some useful variables and functions.

[3]: from embedded_voting.experiments.aggregation import make_generator, make_aggs, f_max,
→˓f_renorm
from embedded_voting.experiments.aggregation import handles, colors, evaluate,
→˓default_order

[4]: n_tries = 10000 # Number of simulations
n_training = 1000 # Number of training samples for trained rules
n_c = 20

5.3.1 Changing Noise Intensities

Computation

[5]: res = np.zeros((9, 3, 3))
with Pool() as p:

for j, distinct_noise in enumerate([.1, 1, 10]):
for k, group_noise in enumerate([.1, 1, 10]):

generator = make_generator(feat_noise=group_noise, dist_noise=distinct_
→˓noise)

training = generator(n_training)
testing = generator(n_tries*n_c).reshape(generator.n_voters, n_tries, n_c)
truth = generator.ground_truth_.reshape(n_tries, n_c)

list_agg = make_aggs(distinct_noise=distinct_noise, group_noise=group_
→˓noise)

res[:, j, k] = evaluate(list_agg=list_agg, truth=truth,
testing=testing, training=training, pool=p)

100%|| 10000/10000 [00:19<00:00, 523.39it/s]
100%|| 10000/10000 [00:17<00:00, 563.79it/s]
100%|| 10000/10000 [00:15<00:00, 644.25it/s]
100%|| 10000/10000 [00:15<00:00, 650.89it/s]
100%|| 10000/10000 [00:15<00:00, 629.96it/s]
100%|| 10000/10000 [00:15<00:00, 653.53it/s]
100%|| 10000/10000 [00:15<00:00, 649.56it/s]
100%|| 10000/10000 [00:16<00:00, 613.23it/s]
100%|| 10000/10000 [00:15<00:00, 656.05it/s]

We save the results.

[6]: with open('noises_intensity.pkl', 'wb') as f:
pickle.dump(res, f)

5.3. Changing Noises 87

Embedded Voting Documentation, Release 0.1.7

Display

[7]: fig, ax = plt.subplots(3,3, figsize=(12,12))

n_agg = len(list_agg)
for j in range(3):

for k in range(3):
ax[j,k].bar(np.arange(n_agg), res[:, k, 2-j], color=[colors[agg.name] for agg

→˓in list_agg], width=1)
ax[j,k].set_ylim(0.5,1.01)
ax[j,k].set_xlim(-1, n_agg)
if k != 0:

ax[j,k].get_yaxis().set_visible(False)
ax[j,k].set_yticks([])

if j == 2:
ax[j,k].set_xticks(np.arange(n_agg))
ax[j,k].set_xticklabels([handles[agg.name] for agg in list_agg],

→˓rotation=90)
else:

ax[j,k].get_xaxis().set_visible(False)
ax[j,k].set_xticks([])

plt.ylabel("Average relative utility")
tikzplotlib.save("noises_intensity.tex")

Save figure:
plt.savefig("noises_intensity.png")

Show the graph
plt.show()

88 Chapter 5. IJCAI

Embedded Voting Documentation, Release 0.1.7

5.3.2 Changing Noise Distributions

Finally, we try different noise functions to deviate from a normal distribution. First we try wider and thiner dis-
tributions, using gennorm, and then we try skewed distributions, using skewnorm. In all cases, mean and standard
deviations stay the same, only the higher moments are altered.

This analysis is not shown in the paper due to space constraints.

Considered Distributions

For illustration, we display the density of each considered distribution, normalized with 0 mean and unit standard
deviation.

5.3. Changing Noises 89

Embedded Voting Documentation, Release 0.1.7

[8]: from scipy.stats import gennorm, skewnorm, norm
def normalize(rv, a, x):

_, var = rv.stats(a, moments='mv')
scale = 1/np.sqrt(var)
mean, _ = rv.stats(a, scale=scale, moments='mv')
return rv.pdf(x, a, loc=-mean, scale=scale)

[9]: plt.figure(figsize=(12, 8))
x = np.linspace(-4, 4, 100)
plt.plot(x, norm.pdf(x), label='Normal')
plt.plot(x, normalize(gennorm, 5, x), label='Wide')
plt.plot(x, normalize(gennorm, .5, x), label='Thin')
plt.plot(x, normalize(skewnorm, -5, x), label='Left')
plt.plot(x, normalize(skewnorm, 5, x), label='Right')
plt.legend()
plt.xlabel('x')
plt.ylabel('Density')
plt.xlim([-4, 4])
plt.ylim([0, .6])
plt.show()

Computation

[10]: def create_gennorm(beta=1):
std = gennorm.rvs(beta, scale=1, size=100000).std()
scale = 1/std

(continues on next page)

90 Chapter 5. IJCAI

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

def f1(size):
return gennorm.rvs(beta, scale=scale, size=size)

return f1

def create_skewnorm(beta=1):
std = skewnorm.rvs(beta, scale=1, size=100000).std()
scale = 1/std
def f1(size):

return skewnorm.rvs(beta, scale=scale, size=size)
return f1

[11]: list_noise = [None, create_gennorm(5), create_gennorm(0.5), create_skewnorm(-5),
→˓create_skewnorm(5)]
dist_names = ["N", "W", "T", "L", "R"]

[12]: res = np.zeros((9, 5))
No need to recompute base case
with open('base_case_results.pkl', 'rb') as f:

res[:, 0] = pickle.load(f)[:-1]
list_agg = make_aggs()

[13]: with Pool() as p:
for i in range(1, 5):

generator = make_generator(truth=ev.TruthGeneratorGeneral(list_noise[i]),
feat_f=list_noise[i],
dist_f=list_noise[i])

training = generator(n_training)
testing = generator(n_tries*n_c).reshape(generator.n_voters, n_tries, n_c)
truth = generator.ground_truth_.reshape(n_tries, n_c)

res[:, i] = evaluate(list_agg=list_agg, truth=truth,
testing=testing, training=training, pool=p)

100%|| 10000/10000 [00:19<00:00, 505.82it/s]
100%|| 10000/10000 [00:16<00:00, 624.14it/s]
100%|| 10000/10000 [00:20<00:00, 478.08it/s]
100%|| 10000/10000 [00:13<00:00, 756.62it/s]

We save the results.

[14]: with open('noises_function.pkl', 'wb') as f:
pickle.dump(res, f)

Display

[15]: plt.figure(figsize=(12,5))

for i, agg in enumerate(list_agg):
plt.bar([j-0.5+0.09*i for j in range(5)], res[i,:], color=colors[agg.name],

label=handles[agg.name], width=0.09)

plt.legend()
plt.xticks([i*1 for i in range(5)], dist_names)

(continues on next page)

5.3. Changing Noises 91

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

plt.xlabel("Noise distribution")
plt.ylabel("Average relative utility")
plt.ylim(0.7,1)
plt.xlim(-0.8,4.5)

tikzplotlib.save("noise_function.tex")
save figure:
plt.savefig("noise_function.png")
plt.show()

We note that MA is no longer a maximum-likelihood estimator as it assumes an incorrect underlying model. The same
holds for its approximations PL and PL+. And indeed MA is no longer a de facto upper bound of performance: it is
outperformed in case R, and even more in case T, by EV/EV+.

5.4 Soft Partition of the Agents

This notebook investigates how the reference scenario evolves if: - The internal cohesion of the large group weakens.
- The influence of the large group over the independent agents growths (absorption phenomenon).

[1]: import numpy as np
import dill as pickle
import matplotlib.pyplot as plt
from tqdm import tqdm
import tikzplotlib
from multiprocess.pool import Pool

[2]: import embedded_voting as ev # Our own module

Direct load of some useful variables and functions.

[3]: from embedded_voting.experiments.aggregation import make_generator, make_aggs, f_max,
→˓f_renorm
from embedded_voting.experiments.aggregation import handles, colors, evaluate,
→˓default_order

92 Chapter 5. IJCAI

Embedded Voting Documentation, Release 0.1.7

[4]: n_tries = 10000 # Number of simulations
n_training = 1000 # Number of training samples for trained rules
n_c = 20

5.4.1 Cohesion

Computation

We define the correlation matrix (the Euclidian row-normalization is performed by the generator).

[5]: def mymatrix_homogeneity(alpha):
M = np.eye(24)
for i in range(20):

M[i] = [alpha**(np.abs(j-i)) for j in range(20)]+[0]*4
return M

[6]: res = np.zeros((9, 11))
list_alpha = [0.1*i for i in range(11)]
with Pool() as p:

for i, alpha in enumerate(list_alpha[:-1]):
groups = [1]*24
features = mymatrix_homogeneity(alpha)
generator = make_generator(groups=groups, features=features)
training = generator(n_training)
testing = generator(n_tries*n_c).reshape(generator.n_voters, n_tries, n_c)
truth = generator.ground_truth_.reshape(n_tries, n_c)

list_agg = make_aggs(groups=groups, features=features)
res[:, i] = evaluate(list_agg=list_agg, truth=truth, testing=testing,

→˓training=training, pool=p)

100%|| 10000/10000 [00:20<00:00, 495.47it/s]
100%|| 10000/10000 [00:16<00:00, 615.94it/s]
100%|| 10000/10000 [00:15<00:00, 632.79it/s]
100%|| 10000/10000 [00:15<00:00, 631.09it/s]
100%|| 10000/10000 [00:15<00:00, 636.35it/s]
100%|| 10000/10000 [00:15<00:00, 659.55it/s]
100%|| 10000/10000 [00:15<00:00, 640.37it/s]
100%|| 10000/10000 [00:15<00:00, 641.47it/s]
100%|| 10000/10000 [00:15<00:00, 665.18it/s]
100%|| 10000/10000 [00:14<00:00, 700.92it/s]

[7]: # No need to recompute base case
with open('base_case_results.pkl', 'rb') as f:

ref_res = pickle.load(f)[:-1]
res[:, -1] = ref_res

We save the results.

[8]: with open('cohesion.pkl', 'wb') as f:
pickle.dump(res, f)

5.4. Soft Partition of the Agents 93

Embedded Voting Documentation, Release 0.1.7

Display

[9]: plt.figure(figsize=(12,5))

for i, agg in enumerate(list_agg):
plt.plot(list_alpha, res[i,:], 'o-', color=colors[agg.name], label=handles[agg.

→˓name],
linewidth=2, markersize=2)

plt.legend()
plt.xlabel("Cohesion $\\alpha$")
plt.ylabel("Average relative utility")
plt.title("Alpha")
plt.ylim(0.7,1)
plt.xlim(0,1)
plt.grid()

tikzplotlib.save("cohesion.tex", axis_height ='6cm', axis_width ='8cm')
save figure:
plt.savefig("cohesion.png")
plt.show()

5.4.2 Absorption

Computation

[10]: def mymatrix_absorption(beta):
M = np.eye(5)
for i in range(4):

M[i+1,0] = beta
M[i+1,i+1] = 1-beta

return M

94 Chapter 5. IJCAI

Embedded Voting Documentation, Release 0.1.7

[11]: res = np.zeros((9, 11))
res[:, 0] = ref_res
list_beta = [0.1*i for i in range(11)]
with Pool() as p:

for i, beta in enumerate(list_beta[1:]):
groups = [20]+[1]*4
features = mymatrix_absorption(beta)
generator = make_generator(groups=groups, features=features)
training = generator(n_training)
testing = generator(n_tries*n_c).reshape(generator.n_voters, n_tries, n_c)
truth = generator.ground_truth_.reshape(n_tries, n_c)

list_agg = make_aggs(groups=groups, features=features)
res[:, i+1] = evaluate(list_agg=list_agg, truth=truth, testing=testing,

→˓training=training, pool=p)

100%|| 10000/10000 [00:17<00:00, 577.24it/s]
100%|| 10000/10000 [00:14<00:00, 692.22it/s]
100%|| 10000/10000 [00:17<00:00, 568.29it/s]
100%|| 10000/10000 [00:14<00:00, 702.97it/s]
100%|| 10000/10000 [00:14<00:00, 690.11it/s]
100%|| 10000/10000 [00:14<00:00, 695.19it/s]
100%|| 10000/10000 [00:14<00:00, 700.98it/s]
100%|| 10000/10000 [00:18<00:00, 546.87it/s]
100%|| 10000/10000 [00:14<00:00, 686.72it/s]
100%|| 10000/10000 [00:14<00:00, 698.80it/s]

We save the results.

[12]: with open('absorption.pkl', 'wb') as f:
pickle.dump(res, f)

Display

[13]: plt.figure(figsize=(12,5))

for i, agg in enumerate(list_agg):
plt.plot(list_beta, res[i,:], 'o-', color=colors[agg.name], label=handles[agg.

→˓name],
linewidth=2, markersize=2)

plt.legend()
plt.xlabel("Absorption $\\beta$")
plt.ylabel("Average relative utility")
plt.ylim(0.7,1)
plt.xlim(0,1)
plt.grid()

tikzplotlib.save("absorption.tex", axis_height ='6cm', axis_width ='8cm')
save figure:
plt.savefig("absorption.png")
plt.show()

5.4. Soft Partition of the Agents 95

Embedded Voting Documentation, Release 0.1.7

96 Chapter 5. IJCAI

CHAPTER 6

Reference

6.1 Truth Generators

6.1.1 Truth Generator

class embedded_voting.TruthGenerator
A generator for the ground truth (“true value”) of each candidate.

6.1.2 Truth Generator General

class embedded_voting.TruthGeneratorGeneral(function=None)
A general generator for the ground truth (“true value”) of each candidate.

The true value of each candidate is independent and follow a probability distribution defined by the function
function.

Parameters function (None -> np.ndarray float) – The function that defines the prob-
ability distribution of the true value of each candidate. If None, the normal distribution is used.

Examples

>>> np.random.seed(42)
>>> truth_generator = TruthGeneratorGeneral()
>>> truth_generator(n_candidates=3)
array([0.49671415, -0.1382643 , 0.64768854])

6.1.3 Truth Generator with particular distribution

97

Embedded Voting Documentation, Release 0.1.7

Uniform distribution

class embedded_voting.TruthGeneratorUniform(minimum_value=10, maximum_value=20,
seed=42)

A uniform generator for the ground truth (“true value”) of each candidate.

The true value of each candidate is independent and uniform in [minimum_value, maximum_value].

Parameters

• minimum_value (Number) – The minimum true value of a candidate.

• maximum_value (Number) – The maximum true value of a candidate.

Examples

>>> np.random.seed(42)
>>> truth_generator = TruthGeneratorUniform(minimum_value=10, maximum_value=20)
>>> truth_generator(n_candidates=3)
array([17.73956049, 14.3887844 , 18.5859792])

Normal distribution

class embedded_voting.TruthGeneratorNormal(center=15, noise=5)
A normal generator for the ground truth (“true value”) of each candidate.

The true value of each candidate is independent and follow a Gaussian distribution with mean center and stan-
dard deviation noise.

Parameters

• center (float) – The mean of the Gaussian distribution.

• noise (float) – The standard deviation of the Gaussian distribution.

Examples

>>> np.random.seed(42)
>>> truth_generator = TruthGeneratorNormal(center=15, noise=5)
>>> truth_generator(n_candidates=3)
array([17.48357077, 14.30867849, 18.23844269])

6.2 Ratings classes

6.2.1 Ratings

class embedded_voting.Ratings
Ratings of the voters in a given election.

Parameters ratings (list, np.ndarray or Ratings) – The ratings given by each voter
to each candidate.

n_voters
The number of voters.

98 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

Type int

n_candidates
The number of candidates.

Type int

Examples

>>> ratings = Ratings([[1, .8, .5], [.3, .5, .9]])
>>> ratings
Ratings([[1. , 0.8, 0.5],

[0.3, 0.5, 0.9]])
>>> ratings.n_voters
2
>>> ratings.n_candidates
3
>>> ratings.voter_ratings(0)
array([1. , 0.8, 0.5])
>>> ratings.candidate_ratings(0)
array([1. , 0.3])

6.2.2 Ratings Generator

class embedded_voting.RatingsGenerator(n_voters)
This abstract class creates Ratings from scratch using some function.

Parameters n_voters (int) – Number of voters in the embeddings.

Uniform Ratings

class embedded_voting.RatingsGeneratorUniform(n_voters, minimum_rating=0, maxi-
mum_rating=1)

Generate uniform random ratings.

Examples

>>> np.random.seed(42)
>>> generator = RatingsGeneratorUniform(n_voters=5)
>>> generator(n_candidates=4)
Ratings([[0.37454012, 0.95071431, 0.73199394, 0.59865848],

[0.15601864, 0.15599452, 0.05808361, 0.86617615],
[0.60111501, 0.70807258, 0.02058449, 0.96990985],
[0.83244264, 0.21233911, 0.18182497, 0.18340451],
[0.30424224, 0.52475643, 0.43194502, 0.29122914]])

6.2.3 Ratings Generator Epistemic

class embedded_voting.RatingsGeneratorEpistemic(n_voters=None,
truth_generator=None)

A generator of ratings based on a ground truth (“true value”) for each candidate.

Parameters

6.2. Ratings classes 99

Embedded Voting Documentation, Release 0.1.7

• n_voters (int) – The number of voters in the generator.

• truth_generator (TruthGenerator) – The truth generator used to generate to true
values of each candidate. Default: TruthGeneratorUniform(10, 20).

ground_truth_
The ground truth (“true value”) for each candidate, corresponding to the last ratings generated.

Type np.ndarray

plot_ratings(show=True)
This function plots the true value of a candidate and the ratings given by each voter for a candidate with
new random values and ratings.

Parameters show (bool) – If True, displays the plot at the end of the function.

Grouped Mean

class embedded_voting.RatingsGeneratorEpistemicGroupsMean(groups_sizes,
group_noise=1, in-
dependent_noise=0,
truth_generator=None)

A generator of ratings such that voters are separated into different groups and the noise of an voter on a candidate
is equal to the noise of his group plus his own independent noise.

This is a particular case of RatingsGeneratorEpistemicGroupsMix when groups_features is the iden-
tity matrix, i.e. each group has its own exclusive feature.

As a result, for each candidate i:

• For each group, a sigma_group is drawn (absolute part of a normal variable, scaled by group_noise). Then
a noise_group is drawn (normal variable scaled by sigma_group).

• For each voter, noise_dependent is equal to the noise_group of her group.

• For each voter, noise_independent is drawn (normal variable scaled by independent_noise).

• For each voter of each group, the rating is computed as ground_truth[i] + noise_dependent +
noise_independent.

Parameters

• groups_sizes (list or np.ndarray) – The number of voters in each groups. The
sum is equal to n_voters.

• group_noise (float) – The variance used to sample the noise of each group.

• independent_noise (float) – The variance used to sample the independent noise of
each voter.

• truth_generator (TruthGenerator) – The truth generator used to generate to true
values of each candidate. Default: TruthGeneratorUniform(10, 20).

ground_truth_
The ground truth (“true value”) for each candidate, corresponding to the last ratings generated.

Type np.ndarray

100 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

Examples

>>> np.random.seed(44)
>>> generator = RatingsGeneratorEpistemicGroupsMean([2, 2])
>>> generator() # doctest: +ELLIPSIS
Ratings([[16.3490...],

[16.3490...],
[19.16928...],
[19.16928...]])

>>> generator.ground_truth_ # doctest: +ELLIPSIS
array([17.739...])

Grouped Noise

class embedded_voting.RatingsGeneratorEpistemicGroupsNoise(groups_sizes,
group_noise=1,
truth_generator=None)

A generator of ratings such that voters are separated into different groups and for each candidate the variance of
each voter of the same group is the same.

For each candidate i:

• For each group, a sigma_group is drawn (absolute part of a normal variable, scaled by group_noise).

• For each voter, her sigma_voter is equal to the sigma_group of her group. Her noise_voter is drawn
(normal variable scaled by sigma_voter).

• For each voter, the rating is computed as ground_truth[i] + noise_voter.

Parameters

• groups_sizes (list or np.ndarray) – The number of voters in each groups. The
sum is equal to n_voters.

• group_noise (float) – The variance used to sample the variances of each group.

• truth_generator (TruthGenerator) – The truth generator used to generate to true
values of each candidate. Default: TruthGeneratorUniform(10, 20).

ground_truth_
The ground truth (“true value”) for each candidate, corresponding to the last ratings generated.

Type np.ndarray

Examples

>>> np.random.seed(42)
>>> generator = RatingsGeneratorEpistemicGroupsNoise([2, 2])
>>> generator() # doctest: +ELLIPSIS
Ratings([[18.196...],

[18.812...],
[17.652...],
[17.652...]])

>>> generator.ground_truth_ # doctest: +ELLIPSIS
array([17.739...])

6.2. Ratings classes 101

Embedded Voting Documentation, Release 0.1.7

Grouped Mix

class embedded_voting.RatingsGeneratorEpistemicGroupsMix(groups_sizes,
groups_features,
group_noise=1, in-
dependent_noise=0,
truth_generator=None)

A generator of ratings such that voters are separated into different groups and the noise of an voter on a candidate
is equal to the noise of his group plus his own independent noise. The noise of different groups can be correlated
due to the group features.

For each candidate i:

• For each feature, a sigma_feature is drawn (absolute part of a normal variable, scaled by group_noise).
Then a noise_feature is drawn (normal variable scaled by sigma_feature).

• For each group, noise_group is the barycenter of the values of noise_feature, with the weights for each
feature given by groups_features.

• For each voter, noise_dependent is equal to the noise_group of her group.

• For each voter, noise_independent is drawn (normal variable scaled by independent_noise).

• For each voter of each group, the rating is computed as ground_truth[i] + noise_dependent +
noise_independent.

Parameters

• groups_sizes (list or np.ndarray) – The number of voters in each groups. The
sum is equal to n_voters.

• groups_features (list or np.ndarray) – The features of each group of voters.
Should be of the same length than group_sizes. Each row of this matrix correspond to
the features of a group.

• group_noise (float) – The variance used to sample the noise of each group.

• independent_noise (float) – The variance used to sample the independent noise of
each voter.

• truth_generator (TruthGenerator) – The truth generator used to generate to true
values of each candidate. Default: TruthGeneratorUniform(10, 20).

ground_truth_
The ground truth (“true value”) for each candidate, corresponding to the last ratings generated.

Type np.ndarray

Examples

>>> np.random.seed(42)
>>> features = [[1, 0], [0, 1], [1, 1]]
>>> generator = RatingsGeneratorEpistemicGroupsMix([2, 2, 2], features)
>>> generator() # doctest: +ELLIPSIS
Ratings([[18.1960...],

[18.1960...],
[18.3058...],
[18.3058...],
[18.2509...],

(continues on next page)

102 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

[18.2509...]])
>>> generator.ground_truth_ # doctest: +ELLIPSIS
array([17.7395...])

>>> np.random.seed(42)
>>> features = [[1, 0, 1, 1], [0, 1, 0, 1], [1, 1, 0, 0]]
>>> generator = RatingsGeneratorEpistemicGroupsMix([2, 2, 2], features)
>>> generator() # doctest: +ELLIPSIS
Ratings([[17.951...],

[17.951...],
[17.737...],
[17.737...],
[18.438...],
[18.438...]])

Multivariate

class embedded_voting.RatingsGeneratorEpistemicMultivariate(covariance_matrix,
indepen-
dent_noise=0,
truth_generator=None)

A generator of ratings based on a covariance matrix.

Parameters

• covariance_matrix (np.ndarray) – The covariance matrix of the voters. Should
be of shape n_voters, n_voters.

• independent_noise (float) – The variance of the independent noise.

• truth_generator (TruthGenerator) – The truth generator used to generate to true
values of each candidate. Default: TruthGeneratorUniform(10, 20).

ground_truth_
The ground truth (“true value”) for each candidate, corresponding to the last ratings generated.

Type np.ndarray

Examples

>>> np.random.seed(42)
>>> generator = RatingsGeneratorEpistemicMultivariate(np.ones((5, 5)))
>>> generator() # doctest: +ELLIPSIS
Ratings([[17.2428...],

[17.2428...],
[17.2428...],
[17.2428...],
[17.2428...]])

>>> generator.independent_noise = 0.5
>>> generator() # doctest: +ELLIPSIS
Ratings([[14.5710...],

[14.3457...],
[15.0093...],
[14.3981...],
[14.1460...]])

6.2. Ratings classes 103

Embedded Voting Documentation, Release 0.1.7

Grouped Mix Free

class embedded_voting.RatingsGeneratorEpistemicGroupsMixFree(groups_sizes,
groups_features,
group_noise=1,
indepen-
dent_noise=0,
truth_generator=None,
group_noise_f=None,
indepen-
dent_noise_f=None)

A generator of ratings such that voters are separated into different groups and the noise of an voter on a candidate
is equal to the noise of his group plus his own independent noise. The noise of different groups can be correlated
due to the group features.

For each candidate i:

• For each feature, a sigma_feature is drawn (absolute part of a normal variable, scaled by group_noise).
Then a noise_feature is drawn according to group_noise_f (scaled by group_noise).

• For each group, noise_group is the barycenter of the values of noise_feature, with the weights for each
feature given by groups_features.

• For each voter, noise_dependent is equal to the noise_group of her group.

• For each voter, noise_independent is drawn according to independent_noise_f (scaled by indepen-
dent_noise).

• For each voter of each group, the rating is computed as ground_truth[i] + noise_dependent +
noise_independent.

Parameters

• groups_sizes (list or np.ndarray) – The number of voters in each groups. The
sum is equal to n_voters.

• groups_features (list or np.ndarray) – The features of each group of voters.
Should be of the same length than group_sizes. Each row of this matrix correspond to
the features of a group.

• group_noise (float) – The variance used to sample the noise of each group.

• independent_noise (float) – The variance used to sample the independent noise of
each voter.

• truth_generator (TruthGenerator) – The truth generator used to generate to true
values of each candidate. Default: TruthGeneratorUniform(10, 20).

• group_noise_f (function) – The function used to sample the noise of each group.
Default: np.random.normal.

• independent_noise_f (function) – The function used to sample the independent
noise of each voter. Default: np.random.normal.

ground_truth_
The ground truth (“true value”) for each candidate, corresponding to the last ratings generated.

Type np.ndarray

104 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

Examples

>>> np.random.seed(42)
>>> features = [[1, 0], [0, 1], [1, 1]]
>>> generator = RatingsGeneratorEpistemicGroupsMixFree([2, 2, 2], features, group_
→˓noise_f=np.random.normal, independent_noise_f=np.random.normal)
>>> generator() # doctest: +ELLIPSIS
Ratings([[18.23627...],

[18.23627...],
[17.60129...],
[17.60129...],
[17.99302...],
[17.99302...]])

>>> generator.ground_truth_ # doctest: +ELLIPSIS
array([17.73956...])

6.3 Embeddings

6.3.1 Embeddings

class embedded_voting.Embeddings
Embeddings of the voters.

Parameters

• positions (np.ndarray or list or Embeddings) – The embeddings of the
voters. Its dimensions are n_voters, n_dim.

• norm (bool) – If True, normalize the embeddings.

n_voters
The number of voters in the ratings.

Type int

n_dim
The number of dimensions of the voters’ embeddings.

Type int

Examples

>>> embeddings = Embeddings([[1, 0], [0, 1], [0.5, 0.5]], norm=True)
>>> embeddings.n_voters
3
>>> embeddings.n_dim
2
>>> embeddings.voter_embeddings(0)
array([1., 0.])

copy(order=’C’)
Return a copy of the array.

Parameters order ({'C', 'F', 'A', 'K'}, optional) – Controls the memory lay-
out of the copy. ‘C’ means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran con-
tiguous, ‘C’ otherwise. ‘K’ means match the layout of a as closely as possible. (Note that

6.3. Embeddings 105

Embedded Voting Documentation, Release 0.1.7

this function and numpy.copy() are very similar but have different default values for their
order= arguments, and this function always passes sub-classes through.)

See also:

numpy.copy() Similar function with different default behavior

numpy.copyto()

Notes

This function is the preferred method for creating an array copy. The function numpy.copy() is similar,
but it defaults to using order ‘K’, and will not pass sub-classes through by default.

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

dilated(approx=True)
Dilate the embeddings of the voters so that they take more space.

The center is computed with get_center(). The angular dilatation factor is such that after transfor-
mation, the maximum angle between the center and an embedding vector will be pi / 4.

Parameters approx (bool) – Passed to get_center() in order to compute the center of
the voters’ embeddings.

Returns A new Embeddings object with the dilated embeddings.

Return type Embeddings

Examples

>>> embeddings = Embeddings(np.array([[.5,.4,.4],[.4,.4,.5],[.4,.5,.4]]),
→˓norm=True)
>>> embeddings
Embeddings([[0.66226618, 0.52981294, 0.52981294],

[0.52981294, 0.52981294, 0.66226618],

(continues on next page)

106 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

[0.52981294, 0.66226618, 0.52981294]])
>>> embeddings.dilated()
Embeddings([[0.98559856, 0.11957316, 0.11957316],

[0.11957316, 0.11957316, 0.98559856],
[0.11957316, 0.98559856, 0.11957316]])

Note that the resulting embedding may not be in the positive orthant, even if the original embedding is:

>>> embeddings = Embeddings([[1, 0], [.7, .7]], norm=True)
>>> embeddings.dilated()
Embeddings([[0.92387953, -0.38268343],

[0.38268343, 0.92387953]])

>>> Embeddings([[1, 0]], norm=True).dilated()
Embeddings([[1., 0.]])

dilated_aux(center, k)
Dilate the embeddings of the voters.

For each vector of the embedding, we apply a “spherical dilatation” that moves vector by multiplying the
angle between center and vector by a given dilatation factor.

More formally, for each vector of the embedding, there exists a unit vector unit_orthogonal and an angle
theta in [0, pi/2] such that vector = norm(vector) * (cos(theta) * center + sin(theta) * unit_orthogonal).
Then the image of vector is norm(vector) * (cos(k * theta) * center + sin(k * theta) * unit_orthogonal).

Parameters

• center (np.ndarray) – Unit vector: center of the dilatation.

• k (float) – Angular dilatation factor.

Returns A new Embeddings object with the dilated embeddings.

Return type Embeddings

Examples

>>> embeddings = Embeddings([[1, 0], [1, 1]], norm=True)
>>> dilated_embeddings = embeddings.dilated_aux(center=np.array([1, 0]), k=2)
>>> np.round(dilated_embeddings, 4)
array([[1., 0.],

[0., 1.]])

>>> embeddings = Embeddings([[1, 0], [1, 1]], norm=False)
>>> dilated_embeddings = embeddings.dilated_aux(center=np.array([1, 0]), k=2)
>>> np.abs(np.round(dilated_embeddings, 4)) # Abs for rounding errors
array([[1. , 0.],

[0. , 1.4142]])

dilated_new(approx=True)
Dilate the embeddings of the voters so that they take more space in the positive orthant.

The center is computed with get_center(). The angular dilatation factor the largest possible so that
all vectors stay in the positive orthant. Cf. max_angular_dilatation_factor().

Parameters approx (bool) – Passed to get_center() in order to compute the center of
the voters’ embeddings.

6.3. Embeddings 107

Embedded Voting Documentation, Release 0.1.7

Returns A new Embeddings object with the dilated embeddings.

Return type Embeddings

Examples

>>> embeddings = Embeddings(np.array([[.5,.4,.4],[.4,.4,.5],[.4,.5,.4]]),
→˓norm=True)
>>> embeddings
Embeddings([[0.66226618, 0.52981294, 0.52981294],

[0.52981294, 0.52981294, 0.66226618],
[0.52981294, 0.66226618, 0.52981294]])

>>> dilated_embeddings = embeddings.dilated_new()
>>> np.abs(np.round(dilated_embeddings, 4))
array([[1., 0., 0.],

[0., 0., 1.],
[0., 1., 0.]])

>>> embeddings = Embeddings([[1, 0], [.7, .7]], norm=True)
>>> dilated_embeddings = embeddings.dilated_new()
>>> np.abs(np.round(dilated_embeddings, 4))
array([[1. , 0.],

[0.7071, 0.7071]])

>>> embeddings = Embeddings([[2, 1], [100, 200]], norm=False)
>>> dilated_embeddings = embeddings.dilated_new()
>>> np.round(dilated_embeddings, 4)
array([[2.2361, 0.],

[0. , 223.6068]])

get_center(approx=True)
Return the center direction of the embeddings.

For this method, we work on the normalized embeddings. Cf. normalized().

With approx set to False, we use an exponential algorithm in n_dim. If r is the rank of the embedding
matrix, we first find the r voters with maximal determinant (in absolute value), i.e. whose associated
parallelepiped has the maximal volume (e.g. in two dimensions, it means finding the two vectors with
maximal angle). Then the result is the mean of the embeddings of these voters, normalized in the sense of
the Euclidean norm.

With approx set to True, we use a polynomial algorithm: we simply take the mean of the embeddings of
all the voters, normalized in the sense of the Euclidean norm.

Parameters approx (bool) – Whether the computation is approximate.

Returns The normalized position of the center vector. Size: n_dim.

Return type np.ndarray

Examples

>>> embeddings = Embeddings([[1, 0], [0, 1], [.5, .5], [.7, .3]], norm=True)
>>> embeddings.get_center(approx=False)
array([0.70710678, 0.70710678])

108 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

>>> embeddings = Embeddings([[1, 0], [0, 1], [.5, .5], [.7, .3]], norm=False)
>>> embeddings.get_center(approx=False)
array([0.70710678, 0.70710678])

>>> embeddings = Embeddings([[1, 0], [0, 1], [.5, .5], [.7, .3]], norm=True)
>>> embeddings.get_center(approx=True)
array([0.78086524, 0.62469951])

mixed_with(other, intensity)
Mix this embedding with another one.

Parameters

• other (Embeddings) – Another embedding with the name number of voters and same
number of dimensions.

• intensity (float) – Must be in [0, 1].

Returns A new Embeddings object with the mixed embeddings.

Return type Embeddings

Examples

For a given voter, the direction of the final embedding is an “angular barycenter” between the original
direction and the direction in other, with mixing parameter intensity:

>>> embeddings = Embeddings([[1, 0]], norm=True)
>>> other_embeddings = Embeddings([[0, 1]], norm=True)
>>> embeddings.mixed_with(other_embeddings, intensity=1/3)
Embeddings([[0.8660254, 0.5]])

For a given voter, the norm of the final embedding is a barycenter between the original norm and the norm
in other, with mixing parameter intensity:

>>> embeddings = Embeddings([[1, 0]], norm=False)
>>> other_embeddings = Embeddings([[5, 0]], norm=False)
>>> embeddings.mixed_with(other_embeddings, intensity=1/4)
Embeddings([[2., 0.]])

normalized()
Normalize the embeddings of the voters so the Euclidean norm of every embedding is 1.

Returns A new Embeddings object with the normalized embeddings.

Return type Embeddings

Examples

>>> embeddings = Embeddings(-np.array([[.5,.9,.4],[.4,.7,.5],[.4,.2,.4]]),
→˓norm=False)
>>> embeddings
Embeddings([[-0.5, -0.9, -0.4],

[-0.4, -0.7, -0.5],
[-0.4, -0.2, -0.4]])

>>> embeddings.normalized()

(continues on next page)

6.3. Embeddings 109

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

Embeddings([[-0.45267873, -0.81482171, -0.36214298],
[-0.42163702, -0.73786479, -0.52704628],
[-0.66666667, -0.33333333, -0.66666667]])

plot(plot_kind=’3D’, dim: list = None, fig=None, plot_position=None, show=True)
Plot the embeddings of the voters, either on a 3D plot, or on a ternary plot. Only three dimensions can be
represented.

Parameters

• plot_kind (str) – The kind of plot we want to show. Can be '3D' or 'ternary'.

• dim (list) – A list of length 3 containing the three dimensions of the embeddings we
want to plot. All elements of this list should be lower than n_dim. By default, it is set to
[0, 1, 2].

• fig (matplotlib figure) – The figure on which we add the plot. The default figure
is a 8 x 8 matplotlib figure.

• plot_position (list) – List of length 3 containing the matplotlib position
[n_rows, n_columns, position]. By default, it is set to [1, 1, 1].

• show (bool) – If True, display the figure at the end of the function.

Returns The matplotlib ax with the figure, if you want to add something to it.

Return type matplotlib ax

plot_candidate(ratings, candidate, plot_kind=’3D’, dim: list = None, fig=None,
plot_position=None, show=True)

Plot the matrix associated to a candidate.

The embedding of each voter is multiplied by the rating she assigned to the candidate.

Parameters

• ratings (np.ndarray) – Matrix of ratings given by voters to the candidates.

• candidate (int) – The candidate for which we want to show the ratings. Should be
lower than n_candidates of ratings.

• plot_kind (str) – The kind of plot we want to show. Can be '3D' or 'ternary'.

• fig (matplotlib figure) – The figure on which we add the plot.

• plot_position (list) – The position of the plot on the figure. Should be of the form
[n_rows, n_columns, position].

• dim (list) – The 3 dimensions we are using for our plot. By default, it is set to [0, 1,
2].

• show (bool) – If True, display the figure at the end of the function.

Returns The matplotlib ax with the figure, if you want to add something to it.

Return type matplotlib ax

plot_candidates(ratings, plot_kind=’3D’, dim: list = None, list_candidates=None,
list_titles=None, row_size=5, show=True)

Plot the matrix associated to a candidate for every candidate in a list of candidates.

Parameters

• ratings (Ratings) – Ratings given by voters to candidates.

110 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

• plot_kind (str) – The kind of plot we want to show. Can be '3D' or 'ternary'.

• dim (list) – The 3 dimensions we are using for our plot. By default, it is set to [0, 1,
2].

• list_candidates (int list) – The list of candidates we want to plot. Should
contains integer lower than n_candidates. By default, we plot every candidates.

• list_titles (str list) – Contains the title of the plots. Should be the same length
than list_candidates.

• row_size (int) – Number of subplots by row. By default, it is set to 5 plots by rows.

• show (bool) – If True, display the figure at the end of the function.

plot_ratings_candidate(ratings_candidate, title=”, plot_kind=’3D’, dim: list = None,
fig=None, plot_position=None, show=True)

Plot the matrix associated to a candidate.

The embedding of each voter is multiplied by the rating she assigned to the candidate.

Parameters

• ratings_candidate (np.ndarray) – The rating each voters assigned to the given
candidate. Should be of length n_voters.

• title (str) – Title of the figure.

• plot_kind (str) – The kind of plot we want to show. Can be '3D' or 'ternary'.

• fig (matplotlib figure) – The figure on which we add the plot.

• plot_position (list) – The position of the plot on the figure. Should be of the form
[n_rows, n_columns, position].

• dim (list) – The 3 dimensions we are using for our plot. By default, it is set to [0, 1,
2].

• show (bool) – If True, display the figure at the end of the function.

Returns The matplotlib ax with the figure, if you want to add something to it.

Return type matplotlib ax

recentered(approx=True)
Recenter the embeddings so that their new center is [1, . . . , 1].

Parameters approx (bool) – Passed to get_center() in order to compute the center of
the voters’ embeddings.

Returns A new Embeddings object with the recentered embeddings.

Return type Embeddings

Examples

>>> embeddings = Embeddings(-np.array([[.5,.9,.4],[.4,.7,.5],[.4,.2,.4]]),
→˓norm=True)
>>> embeddings
Embeddings([[-0.45267873, -0.81482171, -0.36214298],

[-0.42163702, -0.73786479, -0.52704628],
[-0.66666667, -0.33333333, -0.66666667]])

>>> embeddings.recentered()

(continues on next page)

6.3. Embeddings 111

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

Embeddings([[0.40215359, 0.75125134, 0.52334875],
[0.56352875, 0.6747875 , 0.47654713],
[0.70288844, 0.24253193, 0.66867489]])

>>> embeddings = Embeddings([[1, 0], [np.sqrt(3)/2, 1/2], [1/2, np.sqrt(3)/
→˓2]], norm=True)
>>> embeddings
Embeddings([[1. , 0.],

[0.8660254, 0.5],
[0.5 , 0.8660254]])

>>> embeddings.recentered(approx=False)
Embeddings([[0.96592583, 0.25881905],

[0.70710678, 0.70710678],
[0.25881905, 0.96592583]])

recentered_and_dilated(approx=True)
Recenter and dilate.

This is just a shortcut for the (common) operation recentered(), then dilated_new().

Parameters approx (bool) – Passed to get_center() in order to compute the center of
the voters’ embeddings.

Returns A new Embeddings object with the recentered and dilated embeddings.

Return type Embeddings

Examples

>>> embeddings = Embeddings([[1, 0], [np.sqrt(3)/2, 1/2], [1/2, np.sqrt(3)/
→˓2]], norm=True)
>>> embeddings
Embeddings([[1. , 0.],

[0.8660254, 0.5],
[0.5 , 0.8660254]])

>>> new_embeddings = embeddings.recentered_and_dilated(approx=False)
>>> np.abs(np.round(new_embeddings, 4))
array([[1. , 0.],

[0.7071, 0.7071],
[0. , 1.]])

times_ratings_candidate(ratings_candidate)
This method computes the embeddings multiplied by the ratings given by the voters to a given candidate.
For each voter, its embeddings are multiplied by the given rating.

Parameters ratings_candidate (np.ndarray) – The vector of ratings given by the vot-
ers to a given candidate.

Returns A new Embeddings object, where the embedding of each voter is multiplied by the
rating she assigned to the candidate.

Return type Embddings

112 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

Examples

>>> embeddings = Embeddings(np.array([[1, 0], [0, 1], [0.5, 0.5]]),
→˓norm=False)
>>> embeddings.times_ratings_candidate(np.array([.8, .5, .4]))
Embeddings([[0.8, 0.],

[0. , 0.5],
[0.2, 0.2]])

6.3.2 Embeddings generator

class embedded_voting.EmbeddingsGenerator(n_voters, n_dim)
This abstract class creates Embeddings from scratch using some function.

Parameters

• n_voters (int) – Number of voters in the embeddings.

• n_dim (int) – Number of dimensions for the embeddings.

Random Embeddings

class embedded_voting.EmbeddingsGeneratorUniform(n_voters, n_dim)
Create random embeddings uniformly on the non-negative orthant.

The embedding of each voter is a unit vector that is uniformly drawn on the intersection of the unit sphere with
the non-negative orthant.

Examples

>>> np.random.seed(42)
>>> generator = EmbeddingsGeneratorUniform(10, 2)
>>> generator()
Embeddings([[0.96337365, 0.26816265],

[0.39134578, 0.92024371],
[0.70713157, 0.70708199],
[0.89942118, 0.43708299],
[0.65433791, 0.75620229],
[0.70534506, 0.70886413],
[0.1254653 , 0.99209801],
[0.95076 , 0.30992809],
[0.95508537, 0.29633078],
[0.54080587, 0.84114744]])

From correlations

class embedded_voting.EmbeddingsCorrelation
Embeddings based on correlation, dedicated to RuleFast.

Parameters

• positions (np.ndarray or list or Embeddings) – The embeddings of the
voters. Its dimensions are n_voters, n_dim.

6.3. Embeddings 113

Embedded Voting Documentation, Release 0.1.7

• n_sing_val (int) – “Effective” number of singular values.

• ratings_means (np.ndarray) – Mean rating for each voter.

• ratings_stds (np.ndarray) – Standard deviation of the ratings for each voter.

• norm (bool) – If True, normalize the embeddings.

Examples

>>> embeddings = EmbeddingsCorrelation([[1, 2], [3, 4]], n_sing_val=2, ratings_
→˓means=[.1, .2],
... ratings_stds=[.3, .4], norm=True)
>>> embeddings
EmbeddingsCorrelation([[0.4472136 , 0.89442719],

[0.6 , 0.8]])
>>> embeddings.n_sing_val
2
>>> embeddings.ratings_means
[0.1, 0.2]

>>> embeddings2 = embeddings.copy()
>>> embeddings2.n_sing_val
2

6.3.3 Polarized Embeddings

class embedded_voting.EmbeddingsGeneratorPolarized(n_voters, n_dim, prob=None)
Generates parametrized embeddings with n_dim groups of voters. This class creates two embeddings: one
according to uniform distribution, the other one fully polarized (with groups of voters on the canonical basis),
and we can parametrize the embeddings to get one distribution between these two extremes.

Parameters

• n_voters (int) – Number of voters in the embeddings.

• n_dim (int) – Number of dimensions for the embeddings.

• prob (list) – The probabilities for each voter to be in each group. Default is uniform
distribution.

Examples

>>> np.random.seed(42)
>>> generator = EmbeddingsGeneratorPolarized(10, 2)
>>> generator(polarisation=1)
Embeddings([[1., 0.],

[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[1., 0.],
[1., 0.],

(continues on next page)

114 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

[0., 1.]])
>>> generator(polarisation=0)
Embeddings([[0.96337365, 0.26816265],

[0.39134578, 0.92024371],
[0.70713157, 0.70708199],
[0.89942118, 0.43708299],
[0.65433791, 0.75620229],
[0.70534506, 0.70886413],
[0.1254653 , 0.99209801],
[0.95076 , 0.30992809],
[0.95508537, 0.29633078],
[0.54080587, 0.84114744]])

>>> generator(polarisation=0.5)
Embeddings([[0.9908011 , 0.13532618],

[0.19969513, 0.97985808],
[0.92388624, 0.38266724],
[0.53052663, 0.84766827],
[0.34914017, 0.93707051],
[0.92340269, 0.38383261],
[0.06285695, 0.99802255],
[0.98761328, 0.15690762],
[0.98870758, 0.14985764],
[0.28182668, 0.95946533]])

class embedded_voting.EmbeddingsGeneratorFullyPolarized(n_voters, n_dim,
prob=None)

Create embeddings that are random vectors of the canonical basis.

Parameters

• n_voters (int) – Number of voters in the embeddings.

• n_dim (int) – Number of dimensions for the embeddings.

• prob (list) – The probabilities for each voter to be in each group. Default is uniform
distribution.

Examples

>>> np.random.seed(42)
>>> generator = EmbeddingsGeneratorFullyPolarized(10, 5)
>>> generator()
Embeddings([[0., 1., 0., 0., 0.],

[0., 0., 0., 0., 1.],
[0., 0., 0., 1., 0.],
[0., 0., 1., 0., 0.],
[1., 0., 0., 0., 0.],
[1., 0., 0., 0., 0.],
[1., 0., 0., 0., 0.],
[0., 0., 0., 0., 1.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 1., 0.]])

6.3. Embeddings 115

Embedded Voting Documentation, Release 0.1.7

6.4 Linking Ratings and Embeddings

6.4.1 Ratings From Embeddings

class embedded_voting.RatingsFromEmbeddings(n_candidates)
This abstract class is used to generate ratings from embeddings.

Parameters n_candidates (int) – The number of candidates wanted in the ratings.

6.4.2 Embeddings From Ratings Correlation

class embedded_voting.EmbeddingsFromRatingsCorrelation(preprocess_ratings=None,
svd_factor=0.95)

Use the correlation with each voter as the embeddings.

Morally, we have two levels of embedding.

• First, v_i = preprocess_ratings(ratings_voter_i) for each voter i, which is used as a computation step but
not recorded.

• Second, M = v @ v.T, which is recorded as the final embeddings.

Other attributes are computed and recorded:

• n_sing_val: the number of relevant singular values when we compute the SVD. This is based on the
Principal Component Analysis (PCA).

• ratings_means: the mean rating for each voter (without preprocessing).

• ratings_stds: the standard deviation of the ratings for each voter (without preprocessing).

Examples

>>> np.random.seed(42)
>>> ratings = np.ones((5, 3))
>>> generator = EmbeddingsFromRatingsCorrelation(preprocess_ratings=normalize)
>>> embeddings = generator(ratings)
>>> embeddings
EmbeddingsCorrelation([[1., 1., 1., 1., 1.],

[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.]])

>>> embeddings.n_sing_val
1

In fact, the typical usage is with center_and_normalize:

>>> generator = EmbeddingsFromRatingsCorrelation(preprocess_ratings=center_and_
→˓normalize)
>>> embeddings = generator(ratings)
>>> embeddings
EmbeddingsCorrelation([[0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],

(continues on next page)

116 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

[0., 0., 0., 0., 0.]])
>>> embeddings.n_sing_val
0

6.4.3 Embeddings From Ratings

class embedded_voting.EmbeddingsFromRatings
An abstract class that convert ratings into embeddings using some function.

Random

class embedded_voting.EmbeddingsFromRatingsRandom(n_dim=0)
Generates random normalized embeddings for the voters.

The embeddings of the voters are drawn uniformly at random on the part of the sphere where all coordinates are
positive. These embeddings actually does not take the ratings into account.

Examples

>>> np.random.seed(42)
>>> ratings = np.array([[1, 0], [1, 1], [0, 1]])
>>> embeddings_from_ratings = EmbeddingsFromRatingsRandom(n_dim=5)
>>> embeddings_from_ratings(ratings)
Embeddings([[0.28396232, 0.07904315, 0.37027159, 0.87068807, 0.13386116],

[0.12251149, 0.82631858, 0.40155802, 0.24565113, 0.28389299],
[0.17359769, 0.1744638 , 0.09063981, 0.71672067, 0.64615953]])

Identity

class embedded_voting.EmbeddingsFromRatingsIdentity
Use the identity matrix as the embeddings for the voters.

Intuitively, each voter is alone in her group. These embeddings actually does not take the ratings into account.

Examples

>>> ratings = np.array([[.4, .6], [.1, .9], [.7, .5]])
>>> embeddings_from_ratings = EmbeddingsFromRatingsIdentity()
>>> embeddings_from_ratings(ratings)
Embeddings([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

Self

class embedded_voting.EmbeddingsFromRatingsSelf(norm)
Use the normalized ratings as the embeddings for the voters.

Parameters norm (bool) – Whether the embeddings should be normalized.

6.4. Linking Ratings and Embeddings 117

Embedded Voting Documentation, Release 0.1.7

Examples

>>> ratings = np.array([[1, 0], [1, 1], [0, 1]])
>>> embeddings_from_ratings = EmbeddingsFromRatingsSelf(norm=True)
>>> embeddings_from_ratings(ratings)
Embeddings([[1. , 0.],

[0.70710678, 0.70710678],
[0. , 1.]])

6.4.4 Correlated Ratings From Embeddings

class embedded_voting.RatingsFromEmbeddingsCorrelated(coherence=0, rat-
ings_dim_candidate=None,
n_dim=None,
n_candidates=None, min-
imum_random_rating=0,
maximum_random_rating=1,
clip=False)

Generate ratings from embeddings and from a matrix where each embedding dimension gives a rating to each
candidate.

ratings_automatic[voter, candidate] is computed as the average of ratings_dim_candidate[:, candidate],
weighted by the squares of emdeddings[voter, :]. In particular, for each voter belonging to group i (in the
sense that their embedding is the i-th vector of the canonical basis), then ratings_automatic[voter, candidate] is
equal to ratings_dim_candidate[i, candidate].

ratings_random[voter, candidate] is computed as a uniform random number between minimum_random_rating
and maximum_random_rating.

Finally, ratings is the barycenter: coherence * ratings_automatic + (1 - coherence) * ratings_random.

Parameters

• coherence (float) – Between 0 and 1, indicates the degree of coherence between vot-
ers having similar embeddings. If 0, the ratings are purely random. If 1, the ratings are
automatically deduced from embeddings and ratings_dim_candidate.

• ratings_dim_candidate (np.ndarray or list) – An array with shape
n_dim, n_candidates. The coefficient ratings_dim_candidate[dim, candidate] is the
score given by the group represented by the dimension dim to the candidate. By default,
it is set at random with a uniform distribution in the interval [minimum_random_rating,
maximum_random_rating].

• n_dim (int) – The number of dimension of the embeddings. Used to generate rat-
ings_dim_candidate if it is not specified.

• n_candidates (int) – The number of candidates. Used to generate rat-
ings_dim_candidate if it is not specified.

• minimum_random_rating (float) – Minimum rating for the random part.

• maximum_random_rating (float) – Maximum rating for the random part.

• clip (bool) – If true, the final ratings are clipped in the interval [mini-
mum_random_rating, maximum_random_rating].

118 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

Examples

>>> np.random.seed(42)
>>> embeddings = Embeddings(np.array([[0, 1], [1, 0], [1, 1]]), norm=True)
>>> generator = RatingsFromEmbeddingsCorrelated(coherence=.5, ratings_dim_
→˓candidate=np.array([[.8,.4],[.1,.7]]))
>>> generator(embeddings)
Ratings([[0.23727006, 0.82535715],

[0.76599697, 0.49932924],
[0.30300932, 0.35299726]])

6.5 Voting Rules

6.5.1 Single-Winner voting rules

General Class

class embedded_voting.Rule(score_components=1, embeddings_from_ratings=None)
The general class of functions for scoring rules. These rules aggregate the scores of every voter to create a
ranking of the candidates and select a winner.

Parameters

• score_components (int) – The number of components in the aggregated score of
every candidate. If > 1, we perform a lexical sort to obtain the ranking.

• embeddings_from_ratings (EmbeddingsFromRatings) – If no embeddings are
specified in the call, this EmbeddingsFromRatings object is use to generate the embeddings
from the ratings. Default: EmbeddingsFromRatingsIdentity().

ratings_
The ratings of voters on which we run the election.

Type Ratings

embeddings_
The embeddings of the voters on which we run the election.

Type Embeddings

plot_ranking(plot_kind=’3D’, dim=None, row_size=5, show=True)
Plot the matrix associated to each candidate, in the same order than the ranking of the election.

Parameters

• plot_kind (str) – The kind of plot we want to show. Can be '3D' or 'ternary'.

• dim (list) – The 3 dimensions we are using for our plot. By default, it is set to [0, 1,
2].

• row_size (int) – Number of subplots by row. By default, it is set to 5 by rows.

• show (bool) – If True, displays the figure at the end of the function.

plot_winner(plot_kind=’3D’, dim=None, fig=None, plot_position=None, show=True)
Plot the matrix associated to the winner of the election.

Cf. Embeddings.plot_candidate().

Parameters

6.5. Voting Rules 119

Embedded Voting Documentation, Release 0.1.7

• plot_kind (str) – The kind of plot we want to show. Can be '3D' or 'ternary'.

• dim (list) – The 3 dimensions we are using for our plot. By default, it is set to [0, 1,
2].

• fig (matplotlib figure) – The figure on which we add the plot.

• plot_position (list) – The position of the plot on the figure. Should be of the form
[n_rows, n_columns, position].

• show (bool) – If True, displays the figure at the end of the function.

Returns The ax with the plot.

Return type matplotlib ax

ranking_
Return the ranking of the candidates based on their aggregated scores.

Returns The ranking of the candidates. In case of tie, candidates with lower indices are favored.

Return type list of int

score_(candidate)
Return the aggregated score of a given candidate.

Parameters candidate (int) – Index of the candidate for whom we want the score.

Returns if score_components = 1, return a float, otherwise a tuple of length
score_components.

Return type float or tuple

scores_
Return the aggregated scores of all candidates.

Returns The scores of all candidates. The score of each candidate is a float if
score_components = 1 and a tuple of length score_components otherwise.

Return type list

scores_focus_on_last_
Return the last score component of each candidate, but only if the other score components are maximal.

If score_components is 1, return scores_. Otherwise, for each candidate:

• Return the last score component if all other components are maximal.

• Return 0 otherwise.

Note that if the last score component is defined as non-negative, and if it is always positive for the win-
ner, then scores_focus_on_last_ is enough to determine which candidate has the best score by
lexicographical order.

Returns The scores of every candidates.

Return type float list

Examples

Cf. RuleMaxParallelepiped.

welfare_
Return the welfare of all candidates, where the welfare is defined as (score - score_min)/(score_max -
score_min).

120 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

If scores are tuple, then scores_focus_on_last_ is used.

If score_max = score_min, then by convention, all candidates have a welfare of 1.

Returns Welfare of all candidates.

Return type list of float

winner_
Return the winner of the election.

Returns The index of the winner of the election. In case of tie, candidates with lower indices
are favored.

Return type int

Trivial Rules

Sum of scores (Range Voting)

class embedded_voting.RuleSumRatings(score_components=1, embed-
dings_from_ratings=None)

Voting rule in which the score of a candidate is the sum of her ratings.

No embeddings are used for this rule.

Parameters

• score_components (int) – The number of components in the aggregated score of
every candidate. If > 1, we perform a lexical sort to obtain the ranking.

• embeddings_from_ratings (EmbeddingsFromRatings) – If no embeddings are
specified in the call, this EmbeddingsFromRatings object is use to generate the embeddings
from the ratings. Default: EmbeddingsFromRatingsIdentity().

Examples

>>> ratings = Ratings(np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]]))
>>> election = RuleSumRatings()(ratings)
>>> election.scores_
[1.4, 1.6, 1.3]
>>> election.ranking_
[1, 0, 2]
>>> election.winner_
1
>>> election.welfare_
[0.3333333333333328, 1.0, 0.0]

Product of scores (Nash)

class embedded_voting.RuleShiftProduct(score_components=1, embed-
dings_from_ratings=None)

Voting rule in which the score of a candidate is the product of her ratings, shifted by 2, and clamped at 0.1.

No embeddings are used for this rule.

Parameters

6.5. Voting Rules 121

Embedded Voting Documentation, Release 0.1.7

• score_components (int) – The number of components in the aggregated score of
every candidate. If > 1, we perform a lexical sort to obtain the ranking.

• embeddings_from_ratings (EmbeddingsFromRatings) – If no embeddings are
specified in the call, this EmbeddingsFromRatings object is use to generate the embeddings
from the ratings. Default: EmbeddingsFromRatingsIdentity().

Examples

>>> ratings = Ratings(np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]]))
>>> election = RuleShiftProduct()(ratings)
>>> election.scores_
[14.85..., 15.60..., 14.16...]
>>> election.ranking_
[1, 0, 2]
>>> election.winner_
1

Approval Rules

class embedded_voting.RuleApprovalProduct(embeddings_from_ratings=None)
Voting rule in which the score of a candidate is the number of approval (vote greater than 0) that it gets. Ties are
broken by the product of the positive ratings.

More precisely, her score is a tuple whose components are:

• The number of her nonzero ratings.

• The product of her nonzero ratings.

Note that this rule is well suited only if ratings are nonnegative.

No embeddings are used for this rule.

Parameters embeddings_from_ratings (EmbeddingsFromRatings) – If no embed-
dings are specified in the call, this EmbeddingsFromRatings object is use to generate the em-
beddings from the ratings. Default: EmbeddingsFromRatingsIdentity().

Examples

>>> ratings = Ratings(np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]]))
>>> election = RuleApprovalProduct()(ratings)
>>> election.scores_
[(3, 0.06999999999999999), (2, 0.6), (3, 0.048)]
>>> election.ranking_
[0, 2, 1]
>>> election.winner_
0
>>> election.welfare_
[1.0, 0.0, 0.6857142857142858]

class embedded_voting.RuleApprovalSum(embeddings_from_ratings=None)
Voting rule in which the score of a candidate is the number of approval (vote greater than 0) that it gets. Ties are
broken by sum of score (range voting).

More precisely, her score is a tuple whose components are:

122 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

• The number of her nonzero ratings.

• The sum of her ratings.

No embeddings are used for this rule.

Parameters embeddings_from_ratings (EmbeddingsFromRatings) – If no embed-
dings are specified in the call, this EmbeddingsFromRatings object is use to generate the em-
beddings from the ratings. Default: EmbeddingsFromRatingsIdentity().

Examples

>>> ratings = Ratings(np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]]))
>>> election = RuleApprovalSum()(ratings)
>>> election.ranking_
[0, 2, 1]
>>> election.scores_
[(3, 1.4), (2, 1.6), (3, 1.3)]
>>> election.winner_
0
>>> election.welfare_
[1.0, 0.0, 0.9285714285714287]

class embedded_voting.RuleApprovalRandom(embeddings_from_ratings=None)
Voting rule in which the score of a candidate is the number of approval (vote greater than 0) that it gets. Ties are
broken at random.

More precisely, her score is a tuple whose components are:

• The number of her nonzero ratings.

• A random value.

No embeddings are used for this rule.

Parameters embeddings_from_ratings (EmbeddingsFromRatings) – If no embed-
dings are specified in the call, this EmbeddingsFromRatings object is use to generate the em-
beddings from the ratings. Default: EmbeddingsFromRatingsIdentity().

Examples

>>> np.random.seed(42)
>>> ratings = Ratings(np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]]))
>>> election = RuleApprovalRandom()(ratings)
>>> election.ranking_
[2, 0, 1]
>>> election.scores_
[(3, 0.3745401188473625), (2, 0.9507143064099162), (3, 0.7319939418114051)]
>>> election.winner_
2
>>> election.welfare_
[0.5116710637256354, 0.0, 1.0]

Geometric Rules

6.5. Voting Rules 123

Embedded Voting Documentation, Release 0.1.7

Zonotope

class embedded_voting.RuleZonotope(embeddings_from_ratings=None)
Voting rule in which the aggregated score of a candidate is the volume of the zonotope described by his embed-
ding matrix M such that M[i] = score[i, candidate] * embeddings[i]. (cf times_ratings_candidate()).

For each candidate, the rank r of her associated matrix is computed. The volume of the zonotope is
the sum of the volumes of all the parallelepipeds associated to a submatrix keeping only r voters (cf.
volume_parallelepiped()). The score of the candidate is then (r, volume).

Parameters embeddings_from_ratings (EmbeddingsFromRatings) – If no embed-
dings are specified in the call, this EmbeddingsFromRatings object is use to generate the em-
beddings from the ratings. Default: EmbeddingsFromRatingsIdentity().

Examples

>>> ratings = Ratings([[1], [1]])
>>> embeddings = Embeddings([[1, 0, 0], [-.5, 1, 0]], norm=False)
>>> election = RuleZonotope()(ratings, embeddings)
>>> election.scores_
[(2, 1.0)]

>>> ratings = Ratings(np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]]))
>>> embeddings = Embeddings(np.array([[1, 1], [1, 0], [0, 1]]), norm=True)
>>> election = RuleZonotope()(ratings, embeddings)
>>> election.scores_ # doctest: +ELLIPSIS
[(2, 0.458...), (2, 0.424...), (2, 0.372...)]
>>> election.ranking_
[0, 1, 2]
>>> election.winner_
0
>>> election.welfare_ # doctest: +ELLIPSIS
[1.0, 0.605..., 0.0]

Max Parallelepiped

class embedded_voting.RuleMaxParallelepiped(embeddings_from_ratings=None)
Voting rule in which the aggregated score of a candidate is the volume of a parallelepiped described by
n_dim rows of the candidate embedding matrix M such that M[i] = score[i, candidate] * embeddings[i].
(cf times_ratings_candidate()).

For each candidate, the rank r of her associated matrix is computed. Then we choose r voters in order
to maximize the volume of the parallelepiped associated to the submatrix keeping only these voters (cf.
volume_parallelepiped()). The score of the candidate is then (r, volume).

Parameters embeddings_from_ratings (EmbeddingsFromRatings) – If no embed-
dings are specified in the call, this EmbeddingsFromRatings object is use to generate the em-
beddings from the ratings. Default: EmbeddingsFromRatingsIdentity().

Examples

124 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

>>> ratings = Ratings(np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]]))
>>> embeddings = Embeddings(np.array([[1, 1], [1, 0], [0, 1]]), norm=True)
>>> election = RuleMaxParallelepiped()(ratings, embeddings)
>>> election.scores_ # doctest: +ELLIPSIS
[(2, 0.24...), (2, 0.42...), (2, 0.16...)]
>>> election.ranking_
[1, 0, 2]
>>> election.winner_
1
>>> election.welfare_ # doctest: +ELLIPSIS
[0.305..., 1.0, 0.0]

>>> ratings = Ratings([[1, 10], [1, 10], [1, 0]])
>>> embeddings = Embeddings([[1, 0, 0], [0, 1, 0], [0, 0, 1]], norm=False)
>>> election = RuleMaxParallelepiped()(ratings, embeddings)
>>> election.scores_ # doctest: +ELLIPSIS
[(3, 1.0), (2, 100.0...)]
>>> election.scores_focus_on_last_
[1.0, 0]

SVD Rules

General SVD

class embedded_voting.RuleSVD(aggregation_rule=<function prod>, square_root=True,
use_rank=False, embedded_from_ratings=None)

Voting rule in which the aggregated score of a candidate is based on singular values of his embedding matrix (cf
times_ratings_candidate()).

Implicitly, ratings are assumed to be nonnegative.

Parameters

• aggregation_rule (callable) – The aggregation rule for the singular values. Input
: float list. Output : float. By default, it is the product of the singular values.

• square_root (boolean) – If True, use the square root of ratings in the matrix. By
default, it is True.

• use_rank (boolean) – If True, consider the rank of the matrix when doing the ranking.
By default, it is False.

• embedded_from_ratings (EmbeddingsFromRatings) – If no embeddings are
specified in the call, this EmbeddingsFromRatings object is use to generate the embeddings
from the ratings. Default: EmbeddingsFromRatingsIdentity().

Examples

>>> ratings = Ratings(np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]]))
>>> embeddings = Embeddings(np.array([[1, 1], [1, 0], [0, 1]]), norm=True)
>>> election = RuleSVD()(ratings, embeddings)
>>> election.scores_ # DOCTEST: +ELLIPSIS
[0.6041522986797..., 0.547722557505..., 0.5567764362830...]
>>> election.ranking_
[0, 2, 1]

(continues on next page)

6.5. Voting Rules 125

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

>>> election.winner_
0
>>> election.welfare_ # DOCTEST: +ELLIPSIS
[1.0, 0.0, 0.16044515869439...]

Special cases

class embedded_voting.RuleSVDSum(square_root=True, use_rank=False, embed-
ded_from_ratings=None)

Voting rule in which the aggregated score of a candidate is the sum of the singular values of his embedding
matrix (cf times_ratings_candidate()).

Parameters

• square_root (boolean) – If True, use the square root of score in the matrix. By default,
it is True.

• use_rank (boolean) – If True, consider the rank of the matrix when doing the ranking.
By default, it is False.

• embedded_from_ratings (EmbeddingsFromRatings) – If no embeddings are
specified in the call, this EmbeddingsFromRatings object is use to generate the embeddings
from the ratings. Default: EmbeddingsFromRatingsIdentity().

Examples

>>> ratings = Ratings(np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]]))
>>> embeddings = Embeddings(np.array([[1, 1], [1, 0], [0, 1]]), norm=True)
>>> election = RuleSVDSum()(ratings, embeddings)
>>> election.scores_ # DOCTEST: +ELLIPSIS
[1.6150246429573..., 1.6417810801109..., 1.5535613514007...]
>>> election.ranking_
[1, 0, 2]
>>> election.winner_
1
>>> election.welfare_ # DOCTEST: +ELLIPSIS
[0.6967068756070..., 1.0, 0.0]

class embedded_voting.RuleSVDNash(square_root=True, use_rank=False, embed-
ded_from_ratings=None)

Voting rule in which the aggregated score of a candidate is the product of the singular values of his embedding
matrix (cf times_ratings_candidate()).

Parameters

• square_root (boolean) – If True, use the square root of score in the matrix. By default,
it is True.

• use_rank (boolean) – If True, consider the rank of the matrix when doing the ranking.
By default, it is False.

• embedded_from_ratings (EmbeddingsFromRatings) – If no embeddings are
specified in the call, this EmbeddingsFromRatings object is use to generate the embeddings
from the ratings. Default: EmbeddingsFromRatingsIdentity().

126 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

Examples

>>> ratings = Ratings(np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]]))
>>> embeddings = Embeddings(np.array([[1, 1], [1, 0], [0, 1]]), norm=True)
>>> election = RuleSVDNash()(ratings, embeddings)
>>> election.scores_ # DOCTEST: +ELLIPSIS
[0.6041522986797..., 0.547722557505..., 0.5567764362830...]
>>> election.ranking_
[0, 2, 1]
>>> election.winner_
0
>>> election.welfare_ # DOCTEST: +ELLIPSIS
[1.0, 0.0, 0.16044515869439...]

class embedded_voting.RuleSVDMin(square_root=True, use_rank=False, embed-
ded_from_ratings=None)

Voting rule in which the aggregated score of a candidate is the minimum singular value of his embedding matrix
(cf times_ratings_candidate()).

Parameters

• square_root (boolean) – If True, use the square root of score in the matrix. By default,
it is True.

• use_rank (boolean) – If True, consider the rank of the matrix when doing the ranking.
By default, it is False.

• embedded_from_ratings (EmbeddingsFromRatings) – If no embeddings are
specified in the call, this EmbeddingsFromRatings object is use to generate the embeddings
from the ratings. Default: EmbeddingsFromRatingsIdentity().

Examples

>>> ratings = Ratings(np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]]))
>>> embeddings = Embeddings(np.array([[1, 1], [1, 0], [0, 1]]), norm=True)
>>> election = RuleSVDMin()(ratings, embeddings)
>>> election.scores_
[0.5885971537535042, 0.4657304054015261, 0.5608830567730065]
>>> election.ranking_
[0, 2, 1]
>>> election.winner_
0
>>> election.welfare_
[1.0, 0.0, 0.7744377762720253]

class embedded_voting.RuleSVDMax(square_root=True, use_rank=False, embed-
ded_from_ratings=None)

Voting rule in which the aggregated score of a candidate is the maximum singular value of his embedding matrix
(cf times_ratings_candidate()).

Parameters

• square_root (boolean) – If True, use the square root of score in the matrix. By default,
it is True.

• use_rank (boolean) – If True, consider the rank of the matrix when doing the ranking.
By default, it is False.

6.5. Voting Rules 127

Embedded Voting Documentation, Release 0.1.7

• embedded_from_ratings (EmbeddingsFromRatings) – If no embeddings are
specified in the call, this EmbeddingsFromRatings object is use to generate the embeddings
from the ratings. Default: EmbeddingsFromRatingsIdentity().

Examples

>>> ratings = Ratings(np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]]))
>>> embeddings = Embeddings(np.array([[1, 1], [1, 0], [0, 1]]), norm=True)
>>> election = RuleSVDMax()(ratings, embeddings)
>>> election.scores_ # DOCTEST: +ELLIPSIS
[1.0264274892038..., 1.1760506747094..., 0.9926782946277...]
>>> election.ranking_
[1, 0, 2]
>>> election.winner_
1
>>> election.welfare_ # DOCTEST: +ELLIPSIS
[0.184047317055..., 1.0, 0.0]

features_
A function to get the feature vectors of all the candidates. The feature vector is defined as the singular
vector associated to the maximal singular value.

Returns The feature vectors of all the candidates, of shape n_candidates, n_dim.

Return type np.ndarray

Examples

>>> ratings = Ratings(np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]]))
>>> embeddings = Embeddings(np.array([[1, 1], [1, 0], [0, 1]]), norm=True)
>>> election = RuleSVDMax()(ratings, embeddings)
>>> election.features_
array([[0.94829535, 0.39279679],

[0.31392742, 1.13337759],
[0.22807074, 0.96612315]])

plot_features(plot_kind=’3D’, dim=None, row_size=5, show=True)
This function plot the features vector of every candidates in the given dimensions.

Parameters

• plot_kind (str) – The kind of plot we want to show. Can be '3D' or 'ternary'.

• dim (list) – The 3 dimensions we are using for our plot. By default, it is set to '[0,
1, 2]'.

• row_size (int) – Number of subplots by row. By default, it is set to 5 by rows.

• show (bool) – If True, displays the figure at the end of the function.

class embedded_voting.RuleSVDLog(const=1, square_root=True, use_rank=False, embed-
ded_from_ratings=None)

Voting rule in which the aggregated score of a candidate is the sum of log(1 + sigma/const) where sigma are the
singular values of his embedding matrix and const is a constant.

Parameters

• const (float) – The constant by which we divide the singular values in the log.

128 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

• square_root (boolean) – If True, use the square root of score in the matrix. By default,
it is True.

• use_rank (boolean) – If True, consider the rank of the matrix when doing the ranking.
By default, it is False.

• embedded_from_ratings (EmbeddingsFromRatings) – If no embeddings are
specified in the call, this EmbeddingsFromRatings object is use to generate the embeddings
from the ratings. Default: EmbeddingsFromRatingsIdentity().

Examples

>>> ratings = Ratings(np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]]))
>>> embeddings = Embeddings(np.array([[1, 1], [1, 0], [0, 1]]), norm=True)
>>> election = RuleSVDLog()(ratings, embeddings)
>>> election.scores_
[1.169125718695728, 1.1598653051965206, 1.1347313336962574]
>>> election.ranking_
[0, 1, 2]
>>> election.winner_
0
>>> election.welfare_
[1.0, 0.7307579856610341, 0.0]

Features Rule

class embedded_voting.RuleFeatures(score_components=1, embeddings_from_ratings=None)
Voting rule in which the aggregated score of a candidate is the norm of the feature vector of this candidate.

Intuitively, for each candidate, her feature on embedding dimension d is the ideal rating that a voter of group
d should put to that candidate. In this model, the actual rating of a voter for this candidate would be a mean
of the features, weighted by the voter’s embedding: embeddings[voter, :] @ features[candidate, :]. Consid-
ering all the voters and all the candidates, we then obtain ratings = embeddings @ features.T, i.e. features =
(inv(embeddings) @ ratings).T.

Since embeddings is not always invertible, we consider in practice features = (pinv(embeddings) @ ratings).T.
This can be seen as a least-square approximation of the inital model.

Finally, the score of a candidate is the Euclidean norm of her vector of features.

Examples

>>> ratings = Ratings(np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]]))
>>> embeddings = Embeddings(np.array([[1, 1], [1, 0], [0, 1]]), norm=True)
>>> election = RuleFeatures()(ratings, embeddings)
>>> election.scores_
[0.669..., 0.962..., 0.658...]
>>> election.ranking_
[1, 0, 2]
>>> election.winner_
1
>>> election.welfare_
[0.0353..., 1.0, 0.0]

6.5. Voting Rules 129

Embedded Voting Documentation, Release 0.1.7

features_
This function return the feature vector of all candidates.

Returns The matrix of features. Its shape is n_candidates, n_dim.

Return type np.ndarray

plot_features(plot_kind=’3D’, dim: list = None, row_size=5, show=True)
This function plot the features vector of all candidates in the given dimensions.

Parameters

• plot_kind (str) – The kind of plot we want to show. Can be '3D' or 'ternary'.

• dim (list) – The 3 dimensions we are using for our plot. By default, it is set to [0, 1,
2].

• row_size (int) – The number of subplots by row. By default, it is set to 5 plots by row.

• show (bool) – If True, plot the figure at the end of the function.

Fast Rules

Fast

class embedded_voting.RuleFast(embeddings_from_ratings=None, f=None, aggrega-
tion_rule=<function prod>)

Voting rule in which the aggregated score of a candidate is based on singular values of his score matrix.

Parameters

• embeddings_from_ratings (EmbeddingsFromRatingsCorrelation) – If
no embeddings are specified in the call, this EmbeddingsFromRatings object is use to
generate the embeddings from the ratings. Default: EmbeddingsFromRatingsCorrela-
tion(preprocess_ratings=center_and_normalize).

• f (callable) – The transformation for the ratings given by each voter. Input : (ratings_v:
np.ndarray, history_mean: Number, history_std: Number). Output : modified_ratings_v:
np.ndarray.

• aggregation_rule (callable) – The aggregation rule for the singular values. Input
: list of float. Output : float. By default, it is the product of the singular values.

Examples

>>> ratings = np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]])
>>> election = RuleFast()(ratings)
>>> election.ranking_
[1, 0, 2]
>>> election.winner_
1

modified_ratings_
Modified ratings. For each voter, f is applied to her original ratings.

Type Ratings

130 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

Variants

class embedded_voting.RuleFastNash(embeddings_from_ratings=None, f=None)
Voting rule in which the aggregated score of a candidate is the product of the important singular values of his
score matrix.

Parameters

• embeddings_from_ratings (EmbeddingsFromRatingsCorrelation) – If
no embeddings are specified in the call, this EmbeddingsFromRatings object is use to
generate the embeddings from the ratings. Default: EmbeddingsFromRatingsCorrela-
tion(preprocess_ratings=center_and_normalize).

• f (callable) – The transformation for the ratings given by each voter. Input : (ratings_v:
np.ndarray, history_mean: Number, history_std: Number). Output : modified_ratings_v:
np.ndarray.

Examples

>>> ratings = np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]])
>>> election = RuleFastNash()(ratings)
>>> election.ranking_
[1, 0, 2]
>>> election.winner_
1

class embedded_voting.RuleFastSum(embeddings_from_ratings=None, f=None)
Voting rule in which the aggregated score of a candidate is the sum of the important singular values of his score
matrix.

Parameters

• embeddings_from_ratings (EmbeddingsFromRatingsCorrelation) – If
no embeddings are specified in the call, this EmbeddingsFromRatings object is use to
generate the embeddings from the ratings. Default: EmbeddingsFromRatingsCorrela-
tion(preprocess_ratings=center_and_normalize).

• f (callable) – The transformation for the ratings given by each voter. Input : (ratings_v:
np.ndarray, history_mean: Number, history_std: Number). Output : modified_ratings_v:
np.ndarray.

Examples

>>> ratings = np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]])
>>> election = RuleFastSum()(ratings)
>>> election.ranking_
[1, 0, 2]
>>> election.winner_
1

class embedded_voting.RuleFastMin(embeddings_from_ratings=None, f=None)
Voting rule in which the aggregated score of a candidate is the minimum of the important singular values of his
score matrix.

Parameters

6.5. Voting Rules 131

Embedded Voting Documentation, Release 0.1.7

• embeddings_from_ratings (EmbeddingsFromRatingsCorrelation) – If
no embeddings are specified in the call, this EmbeddingsFromRatings object is use to
generate the embeddings from the ratings. Default: EmbeddingsFromRatingsCorrela-
tion(preprocess_ratings=center_and_normalize).

• f (callable) – The transformation for the ratings given by each voter. Input : (ratings_v:
np.ndarray, history_mean: Number, history_std: Number). Output : modified_ratings_v:
np.ndarray.

Examples

>>> ratings = np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]])
>>> election = RuleFastMin()(ratings)
>>> election.ranking_
[1, 0, 2]
>>> election.winner_
1

class embedded_voting.RuleFastLog(embeddings_from_ratings=None, f=None)
Voting rule in which the aggregated score of a candidate is the log sum of the important singular values of his
score matrix.

Parameters

• embeddings_from_ratings (EmbeddingsFromRatingsCorrelation) – If
no embeddings are specified in the call, this EmbeddingsFromRatings object is use to
generate the embeddings from the ratings. Default: EmbeddingsFromRatingsCorrela-
tion(preprocess_ratings=center_and_normalize).

• f (callable) – The transformation for the ratings given by each voter. Input : (ratings_v:
np.ndarray, history_mean: Number, history_std: Number). Output : modified_ratings_v:
np.ndarray.

Examples

>>> ratings = np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]])
>>> election = RuleFastLog()(ratings)
>>> election.ranking_
[1, 0, 2]
>>> election.winner_
1

Maximum Likelihood

MLE Gaussian

class embedded_voting.RuleMLEGaussian(embeddings_from_ratings=None, tol=1e-06)
A rule that computes the scores of the candidates, assuming that the embeddings of the voters correspond to a
covariance matrix.

For this rule, the embeddings must be a matrix n_voters * n_voters.

132 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

Examples

Consider a generating epistemic model, where the true value of each candidate is uniformly drawn in a given
interval, and where the voters add a noise which is multivariate Gaussian.

>>> np.random.seed(42)
>>> covariance_matrix = np.array([
... [2.02, 1.96, 0.86, 0.81, 1.67],
... [1.96, 3.01, 1.46, 0.69, 1.59],
... [0.86, 1.46, 0.94, 0.39, 0.7],
... [0.81, 0.69, 0.39, 0.51, 0.9],
... [1.67, 1.59, 0.7 , 0.9 , 1.78]
...])
>>> ratings_generator = RatingsGeneratorEpistemicMultivariate(covariance_
→˓matrix=covariance_matrix)
>>> ratings = ratings_generator(n_candidates=2)
>>> ratings_generator.ground_truth_
array([17.73956049, 14.3887844])
>>> ratings
Ratings([[17.56232759, 14.51592899],

[16.82544972, 15.78818081],
[17.51952581, 14.44449175],
[17.34964888, 14.4010885],
[16.69480298, 14.9281998]])

If we know the covariance matrix of the noises, then RuleMLEGaussian is the maximum likelihood estimator
of the ground truth:

>>> election = RuleMLEGaussian()(ratings, embeddings=covariance_matrix)
>>> election.scores_ # doctest: +ELLIPSIS
[268.6683142..., 221.5083075...]

Model Aware

class embedded_voting.RuleModelAware(groups_sizes, groups_features, group_noise=1, inde-
pendent_noise=0)

A rule that is know the noise parameters of the model and use the maximum likelihood to select the best
candidate.

Parameters

• groups_sizes (list of int) – The number of voters in each group.

• groups_features (np.ndarray of shape (n_groups, n_features)) –
The features of each group.

• group_noise (float) – The value of the feature noise.

• independent_noise (float) – The value of the distinct noise.

Examples

>>> ratings = Ratings(np.array([[.5, .6, .3], [.7, 0, .2], [.2, 1, .8]]))
>>> election = RuleModelAware([2, 1], [[1, 0], [0, 1]], group_noise=1,
→˓independent_noise=1)(ratings)
>>> election.ranking_

(continues on next page)

6.5. Voting Rules 133

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

[1, 2, 0]
>>> election.scores_
[0.5, 0.7, 0.5666666...]
>>> election.winner_
1

Extensions to ordinal votes

Positional scoring rules

General class

class embedded_voting.RulePositional(points, rule=None)
This class enables to extend a voting rule to an ordinal input with a positional scoring rule.

Parameters

• points (list) – The vector of the positional scoring rule. Should be of the same length
than the number of candidates. In each ranking, candidate ranked at position i get points[i]
points.

• rule (Rule) – The aggregation rule used to determine the aggregated scores of the candi-
dates.

fake_ratings_
The modified ratings of voters (with ordinal scores) on which we run the election.

Type ratings

points
The vector of the positional scoring rule. Should be of the same length than the number of candidates. In
each ranking, candidate ranked at position i get points[i] points.

Type np.ndarray

base_rule
The aggregation rule used to determine the aggregated scores of the candidates.

Type Rule

_rule
The aggregation rule instantiated with the fake_ratings.

Type Rule

_score_components
The number of components in the score of every candidate. If > 1, we perform a lexical sort to obtain the
ranking.

Examples

>>> ratings = np.array([[.1, .2, .8, 1], [.7, .9, .8, .6], [1, .6, .1, .3]])
>>> embeddings = Embeddings([[1, 0], [1, 1], [0, 1]], norm=True)
>>> election = RuleSVDNash()(ratings, embeddings)
>>> election.ranking_
[3, 0, 1, 2]

(continues on next page)

134 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

>>> election_bis = RulePositional([2, 1, 1, 0])(ratings, embeddings)
>>> election_bis.fake_ratings_
Ratings([[0. , 0.5, 0.5, 1.],

[0.5, 1. , 0.5, 0.],
[1. , 0.5, 0. , 0.5]])

>>> election_bis.set_rule(RuleSVDNash())(ratings, embeddings).ranking_
[1, 3, 0, 2]

plot_fake_ratings(plot_kind=’3D’, dim=None, list_candidates=None, list_titles=None,
row_size=5, show=True)

This function plot the candidates in the fake ratings, obtained using the scoring vector points.

Parameters

• plot_kind (str) – The kind of plot we want to show. Can be '3D' or 'ternary'.

• dim (list) – The 3 dimensions we are using for our plot. By default, it is set to [0, 1,
2].

• list_candidates (int list) – The list of candidates we want to plot. Should
contains integers lower than n_candidates. By default, we plot all candidates.

• list_titles (str list) – Contains the title of the plots. Should be the same length
than list_candidates.

• row_size (int) – Number of subplots by row. By default, it is set to 5 plots by rows.

• show (bool) – If True, displays the figure at the end of the function.

set_rule(rule)
This function updates the base_rule used for the election.

Parameters rule (Rule) – The new rule to use.

Returns The object itself.

Return type RulePositional

Particular cases

class embedded_voting.RulePositionalPlurality(n_candidates, rule=None)
This class enables to extend a voting rule to an ordinal input with Plurality rule (vector [1, 0, ..., 0]).

Parameters rule (Rule) – The aggregation rule used to determine the aggregated scores of the
candidates.

Examples

>>> ratings = np.array([[.1, .2, .8, 1], [.7, .9, .8, .6], [1, .6, .1, .3]])
>>> embeddings = Embeddings(np.array([[1, 0], [1, 1], [0, 1]]), norm=True)
>>> election = RulePositionalPlurality(4, rule=RuleSVDNash(use_
→˓rank=True))(ratings, embeddings)
>>> election.fake_ratings_
Ratings([[0., 0., 0., 1.],

[0., 1., 0., 0.],
[1., 0., 0., 0.]])

>>> election.ranking_
[0, 1, 3, 2]

6.5. Voting Rules 135

Embedded Voting Documentation, Release 0.1.7

class embedded_voting.RulePositionalVeto(n_candidates, rule=None)
This class enables to extend a voting rule to an ordinal input with Veto rule (vector [1, ..., 1, 0]).

Parameters rule (Rule) – The aggregation rule used to determine the aggregated scores of the
candidates.

Examples

>>> ratings = np.array([[.1, .2, .8, 1], [.7, .9, .8, .6], [1, .6, .1, .3]])
>>> embeddings = Embeddings(np.array([[1, 0], [1, 1], [0, 1]]), norm=True)
>>> election = RulePositionalVeto(n_candidates=4, rule=RuleSVDNash())(ratings,
→˓embeddings)
>>> election.fake_ratings_
Ratings([[0., 1., 1., 1.],

[1., 1., 1., 0.],
[1., 1., 0., 1.]])

>>> election.ranking_
[1, 3, 0, 2]

class embedded_voting.RulePositionalKApproval(n_candidates, k=2, rule=None)
This class enables to extend a voting rule to an ordinal input with k-Approval rule (vector [1, 1, ..., 0]
with k ones).

Parameters

• k (int) – The k parameter of the k-approval. By default, it is set to 2.

• rule (Rule) – The aggregation rule used to determine the aggregated scores of the candi-
dates.

Examples

>>> ratings = np.array([[.1, .2, .8, 1], [.7, .9, .8, .6], [1, .6, .1, .3]])
>>> embeddings = Embeddings(np.array([[1, 0], [1, 1], [0, 1]]), norm=True)
>>> election = RulePositionalKApproval(n_candidates=4, k=2, rule=RuleSVDNash(use_
→˓rank=True))(
... ratings, embeddings)
>>> election.fake_ratings_
Ratings([[0., 0., 1., 1.],

[0., 1., 1., 0.],
[1., 1., 0., 0.]])

>>> election.ranking_
[1, 2, 0, 3]

class embedded_voting.RulePositionalBorda(n_candidates, rule=None)
This class enables to extend a voting rule to an ordinal input with Borda rule (vector [m-1, m-2, ..., 1,
0]).

Parameters rule (Rule) – The aggregation rule used to determine the aggregated scores of the
candidates.

Examples

136 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

>>> ratings = np.array([[.1, .2, .8, 1], [.7, .9, .8, .6], [1, .6, .1, .3]])
>>> embeddings = Embeddings(np.array([[1, 0], [1, 1], [0, 1]]), norm=True)
>>> election = RulePositionalBorda(n_candidates=4, rule=RuleSVDNash())(ratings,
→˓embeddings)
>>> election.fake_ratings_
Ratings([[0. , 0.33333333, 0.66666667, 1.],

[0.33333333, 1. , 0.66666667, 0.],
[1. , 0.66666667, 0. , 0.33333333]])

>>> election.ranking_
[1, 3, 2, 0]

Instant Runoff voting

class embedded_voting.RuleInstantRunoff(rule=None)
This class enables to extend a voting rule to an ordinal input with Instant Runoff ranking. You cannot access to
the scores_ because IRV only compute the ranking of the candidates.

Parameters rule (Rule) – The aggregation rule used to determine the aggregated scores of the
candidates.

Examples

>>> ratings = np.array([[.1, .2, .8, 1], [.7, .9, .8, .6], [1, .6, .1, .3]])
>>> embeddings = Embeddings(np.array([[1, 0], [1, 1], [0, 1]]), norm=True)
>>> election = RuleInstantRunoff(RuleSVDNash())(ratings, embeddings)
>>> election.ranking_
[1, 0, 2, 3]

Taking historical data into account

class embedded_voting.RuleRatingsHistory(rule, embeddings_from_ratings=None, f=None)
Rule that use the ratings history to improve the embeddings, in particular the quality of the mean and deviation
of ratings for every voter. The original rule is then applied to the modified ratings.

Parameters

• rule (Rule) – The rule to apply to the modified ratings.

• embeddings_from_ratings (EmbeddingsFromRatings) – The function to con-
vert ratings to embeddings.

• f (callable) – The function to apply to the ratings. It takes as input the ratings, the mean
and the standard deviation of the ratings in the historic. It returns the modified ratings. By
default, it is set to f(ratings_v, history_mean, history_std) = np.sqrt(np.maximum(0, (rat-
ings_v - history_mean) / history_std)).

modified_ratings_
Modified ratings. For each voter, f is applied to her original ratings.

Type Ratings

6.5. Voting Rules 137

Embedded Voting Documentation, Release 0.1.7

6.5.2 Multi-Winner voting rules

General Class

class embedded_voting.MultiwinnerRule(k=None)
A class for multiwinner rules, in other words aggregation rules that elect a committee of candidates of size k_,
given a ratings of voters with embeddings.

Parameters k (int) – The size of the committee.

ratings
The ratings given by voters to candidates

Type np.ndarray

embeddings
The embeddings of the voters

Type Embeddings

k_
The size of the committee.

Type int

set_k(k)
A function to update the size k_ of the winning committee

Parameters k (int) – The new size of the committee.

Returns The object itself.

Return type MultiwinnerRule

winners_
A function that returns the winners, i.e. the members of the elected committee.

Returns The indexes of the elected candidates.

Return type int list

Iterative Rules

General Class

class embedded_voting.MultiwinnerRuleIter(k=None, quota=’classic’, take_min=False)
A class for multi-winner rules that are adaptations of STV to the embeddings ratings model.

Parameters

• k (int) – The size of the committee.

• quota (str) – The quota used for the re-weighing step. Either 'droop' quota (n/(k+1)
+1) or 'classic' quota (n/k).

• take_min (bool) – If True, when the total satisfaction is less than the quota, we replace
the quota by the total satisfaction. By default, it is set to False.

quota
The quota used for the re-weighing step. Either 'droop' quota (n/(k+1) +1) or 'classic' quota (n/k).

Type str

138 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

take_min
If True, when the total satisfaction is less than the quota, we replace the quota by the total satisfaction.
By default, it is set to False.

Type bool

weights
Current weight of every voter

Type np.ndarray

features_vectors
This function return the features vectors associated to the candidates in the winning committee.

Returns The list of the features vectors of each candidate. Each vector is of length n_dim.

Return type list

plot_weights(plot_kind=’3D’, dim=None, row_size=5, verbose=True, show=True)
This function plot the evolution of the voters’ weights after each step of the rule.

Parameters

• plot_kind (str) – The kind of plot we want to show. Can be 3D or ternary.

• dim (list) – The 3 dimensions we are using for our plot. By default, it is set to [0, 1,
2].

• row_size (int) – Number of subplots by row. By default, it is set to 5.

• verbose (bool) – If True, print the total weight divided by the number of remaining
candidates at the end of each step.

• show (bool) – If True, displays the figure at the end of the function.

plot_winners(plot_kind=’3D’, dim=None, row_size=5, show=True)
This function plot the winners of the election.

Parameters

• plot_kind (str) – The kind of plot we want to show. Can be 3D or ternary.

• dim (list) – The 3 dimensions we are using for our plot. By default, it is set to [0, 1,
2].

• row_size (int) – Number of subplots by row. By default, it is set to 5.

• show (bool) – If True, displays the figure at the end of the function.

set_quota(quota)
A function to update the quota of the rule.

Parameters quota (str) – The new quota, should be either 'droop' or 'classic'.

Returns The object itself.

Return type MultiwinnerRule

winners_
This function return the winning committee.

Returns The winning committee.

Return type int list

6.5. Voting Rules 139

Embedded Voting Documentation, Release 0.1.7

IterRule + SVD

class embedded_voting.MultiwinnerRuleIterSVD(k=None, aggregation_rule=<function
amax>, square_root=True,
quota=’classic’, take_min=False)

Iterative multiwinner rule based on a SVD aggregation rule.

Parameters

• k (int) – The size of the committee.

• aggregation_rule (callable) – The aggregation rule for the singular values. By
default, it is the maximum.

• square_root (bool) – If True, we take the square root of the scores instead of the scores
for the scored_embeddings().

• quota (str) – The quota used for the re-weighing step. Either 'droop' quota (n/(k+1)
+1) or 'classic' quota (n/k).

• take_min (bool) – If True, when the total satisfaction is less than the quota, we replace
the quota by the total satisfaction. By default, it is set to False.

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = np.array([[1, 0.8, 0.5, 0, 0, 0], [0, 0, 0, 0.5, 0.8,
→˓1]])
>>> probability = [3/4, 1/4]
>>> embeddings = EmbeddingsGeneratorPolarized(100, 2, probability)(1)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=1, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> election = MultiwinnerRuleIterSVD(3)(ratings, embeddings)
>>> election.winners_
[0, 1, 5]
>>> _ = election.set_k(4)
>>> election.winners_
[0, 1, 5, 2]
>>> election.plot_weights(dim=[0, 0, 0], show=False)
Weight / remaining candidate : [25.0, 24.99999999999999, 24.999999999999996, 30.
→˓999999999999993]
>>> election.features_vectors
Embeddings([[1., 0.],

[1., 0.],
[0., 1.],
[1., 0.]])

IterRule + Features

class embedded_voting.MultiwinnerRuleIterFeatures(k=None, quota=’classic’,
take_min=False)

Iterative multiwinner rule based on the RuleFeatures aggregation rule.

Parameters

• k (int) – The size of the committee.

140 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

• quota (str) – The quota used for the re-weighing step. Either 'droop' quota (n/(k+1)
+1) or 'classic' quota (n/k).

• take_min (bool) – If True, when the total satisfaction is less than the quota, we replace
the quota by the total satisfaction. By default, it is set to False.

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = np.array([[1, 0.8, 0.5, 0, 0, 0], [0, 0, 0, 0.5, 0.8,
→˓1]])
>>> probability = [3/4, 1/4]
>>> embeddings = EmbeddingsGeneratorPolarized(100, 2, probability)(1)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=1, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> election = MultiwinnerRuleIterFeatures(3)(ratings, embeddings)
>>> election.winners_
[0, 5, 1]
>>> _ = election.set_k(4)
>>> election.winners_
[0, 5, 1, 2]
>>> election.plot_weights(dim=[0, 0, 0], show=False)
Weight / remaining candidate : [25.0, 24.999999999999986, 27.999999999999993, 30.
→˓999999999999986]
>>> election.features_vectors
Embeddings([[1., 0.],

[0., 1.],
[1., 0.],
[1., 0.]])

static compute_features(embeddings, scores)
A function to compute features for some embeddings and scores.

Parameters

• embeddings (np.ndarray) – The embeddings of the voters. Should be of shape
n_voters, n_dim.

• scores (np.ndarray) – The scores given by the voters to the candidates. Should be
of shape n_voters, n_candidates.

Returns The features of every candidates. Of shape n_candidates, n_dim.

Return type np.ndarray

6.6 Analysis Tools

6.6.1 Simulations

Tools for benchmarking aggregation rules

class embedded_voting.experiments.aggregation.RandomWinner
Returns a random winner. Mimics a Rule. .. rubric:: Examples

6.6. Analysis Tools 141

Embedded Voting Documentation, Release 0.1.7

>>> np.random.seed(42)
>>> generator = make_generator()
>>> ratings = generator(7)
>>> rule = RandomWinner()
>>> rule(ratings).winner_
4
>>> rule(ratings).winner_
3

class embedded_voting.experiments.aggregation.SingleEstimator(i)
Returns the best estimation of one given agent. Mimics a Rule. :param i: Index of the selected agents. :type i:
int

Examples

>>> np.random.seed(42)
>>> generator = make_generator()
>>> ratings = generator(7)
>>> rule = SingleEstimator(10)
>>> ratings[10, :]
Ratings([1.2709017 , 0.03209107, 1.98196138, 1.12347711, -1.55465272,

-0.72448238, 0.63366952])
>>> rule(ratings).winner_
2

embedded_voting.experiments.aggregation.evaluate(list_agg, truth, testing, training,
pool=None)

Run a sim. :param list_agg: Rules to test. :type list_agg: list :param truth: Ground truth of testing val-
ues (n_tries X n_candidates). :type truth: ndarray :param testing: Estimated scores (n_agents X n_tries X
n_candidates). :type testing: ndarray :param training: Training scores (n_agents X training_size). :type
training: ndarray :param pool: Use parallelism. :type pool: Pool, optional.

Returns Efficiency of each algorithm.

Return type ndarray

Examples

>>> np.random.seed(42)
>>> n_training = 10
>>> n_tries = 100
>>> n_c = 20
>>> generator = make_generator()
>>> training = generator(n_training)
>>> testing = generator(n_tries*n_c).reshape(generator.n_voters, n_tries, n_c)
>>> truth = generator.ground_truth_.reshape(n_tries, n_c)
>>> list_agg = make_aggs(order=default_order+['Rand'])
>>> with Pool() as p:
... res = evaluate(list_agg=list_agg[:-1], truth=truth, testing=testing,
→˓training=training, pool=p)
>>> ', '.join(f"{a.name}: {r:.2f}" for a, r in zip(list_agg, res))
'MA: 0.94, PL+: 0.89, EV+: 0.95, EV: 0.94, AV: 0.90, PV: 0.86, RV: 0.85, Single:
→˓0.82, PL: 0.78'
>>> res = evaluate(list_agg=list_agg, truth=truth, testing=testing,
→˓training=training)

(continues on next page)

142 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

>>> ', '.join(f"{a.name}: {r:.2f}" for a, r in zip(list_agg, res))
'MA: 0.94, PL+: 0.89, EV+: 0.95, EV: 0.94, AV: 0.90, PV: 0.86, RV: 0.85, Single:
→˓0.82, PL: 0.78, Rand: 0.49'

embedded_voting.experiments.aggregation.f_max(ratings_v, history_mean, history_std)

Parameters

• ratings_v (ndarray) – Score vector.

• history_mean (float) – Observed mean.

• history_std (float) – Observed standard deviation

Returns The positive part of the normalized scores.

Return type ndarray

Examples

>>> f_max(10, 5, 2)
2.5
>>> f_max(10, 20, 10)
0.0

embedded_voting.experiments.aggregation.f_renorm(ratings_v, history_mean, his-
tory_std)

Parameters

• ratings_v (ndarray) – Score vector.

• history_mean (float) – Observed mean.

• history_std (float) – Observed standard deviation

Returns The scores with mean and std normalized.

Return type ndarray

Examples

>>> f_renorm(10, 5, 2)
2.5
>>> f_renorm(10, 20, 10)
-1.0

embedded_voting.experiments.aggregation.make_aggs(groups=None, order=None, fea-
tures=None, group_noise=1, dis-
tinct_noise=0.1)

Crafts a list of aggregator rules. :param groups: Sizes of each group (for the Model-Aware rule). :type groups:
list of int :param order: Short names of the aggregators to return. :type order: list, optional :param features:
Features correlations (for the Model-Aware rule). Default to independent groups. :type features: ndarray,
optional :param group_noise: Feature noise intensity. :type group_noise: float, default=1.0 :param dis-
tinct_noise: Distinct noise intensity. :type distinct_noise: float, default=0.1

Returns Aggregators.

Return type list

6.6. Analysis Tools 143

Embedded Voting Documentation, Release 0.1.7

Examples

>>> list_agg = make_aggs()
>>> [agg.name for agg in list_agg]
['MA', 'PL+', 'EV+', 'EV', 'AV', 'PV', 'RV', 'Single', 'PL']

embedded_voting.experiments.aggregation.make_generator(groups=None, truth=None,
features=None,
feat_noise=1, feat_f=None,
dist_noise=0.1,
dist_f=None)

Parameters

• groups (list of int) – Sizes of each group.

• truth (TruthGenerator, default=N(0, 1)) – Ground truth generator.

• features (ndarray) – Features correlations.

• feat_noise (float, default=1.0) – Feature noise intensity.

• feat_f (method, default to normal law) – Feature noise distribution.

• dist_noise (float, default=0.1) – Distinct noise intensity.

• dist_f (method, default to normal law) – Distinct noise distribution.

Returns Provides grounds truth and estimates.

Return type Generator

Examples

>>> np.random.seed(42)
>>> generator = make_generator()
>>> ratings = generator(2)
>>> truth = generator.ground_truth_
>>> truth[0]
0.4967141530112327
>>> ratings[:, 0]
Ratings([1.22114616, 1.09745525, 1.1986587 , 1.09806092, 1.09782972,

1.16859892, 0.95307467, 0.97191091, 1.08817394, 1.04311958,
1.17582742, 1.05360028, 1.00317232, 1.29096757, 1.12182506,
1.15115551, 1.00192787, 1.08996442, 1.15549495, 1.02930333,
2.05731381, 0.20249691, 0.23340782, 2.01575631])

>>> truth[1]
-0.13826430117118466
>>> ratings[:, 1]
Ratings([1.73490024, 1.51804687, 1.58119528, 1.73370001, 1.78786054,

1.73115071, 1.70244906, 1.68390351, 1.56616168, 1.64202946,
1.66795001, 1.81972611, 1.74837571, 1.53770987, 1.74642228,
1.67550566, 1.64632168, 1.77518151, 1.81711384, 1.8071419 ,

-0.23568328, -1.22689647, 0.71740695, -1.26155344])

6.6.2 Moving Voter Analysis

class embedded_voting.MovingVoter(embeddings=None, moving_voter=0)
This subclass of Embeddings can be used to see what happen to the scores of the different candidates when a

144 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

voter moves from a group to another.

There is 4 candidates and 3 groups: Each group strongly support one of the candidate and dislike the other
candidates, except the last candidate which is fine for every group.

The moving voter is a voter that do not have any preference between the candidates (she gives a score of 0.8 to
every candidate, except 0.5 for the last one), but her embeddings move from one position to another.

Parameters

• embeddings (Embeddings) – The embeddings of the voters. If none is specified, em-
beddings are the identity matrix.

• moving_voter (int) – The index of the voter that is moving

rule
The rule we are using in the election.

Type Rule

moving_voter
The index of the voter that is moving.

Type int

ratings_
The ratings given by the voters to the candidates

Type np.ndarray

Examples

>>> moving_profile = MovingVoter()
>>> moving_profile(RuleSumRatings()) # DOCTEST: +ELLIPSIS
<embedded_voting.experiments.moving_voter.MovingVoter object at ...>
>>> moving_profile.moving_voter
0
>>> moving_profile.embeddings
Embeddings([[1., 0., 0.],

[0., 0., 1.],
[0., 1., 0.],
[1., 0., 0.]])

>>> moving_profile.ratings_
Ratings([[0.8, 0.8, 0.8, 0.5],

[0.1, 0.1, 1. , 0.5],
[0.1, 1. , 0.1, 0.5],
[1. , 0.1, 0.1, 0.5]])

plot_features_evolution(show=True)
This function plot the evolution of the features of the candidates when the moving voters’ embeddings are
changing. Only works for RuleSVDMax and RuleFeatures.

Parameters show (bool) – If True, displays the figure at the end of the function.

Examples

>>> p = MovingVoter()(RuleSVDMax())
>>> p.plot_features_evolution(show=False)

6.6. Analysis Tools 145

Embedded Voting Documentation, Release 0.1.7

plot_scores_evolution(show=True)
This function plot the evolution of the scores of the candidates when the moving voters’ embeddings are
changing.

Parameters show (bool) – If True, displays the figure at the end of the function.

Examples

>>> p = MovingVoter()(RuleSVDNash())
>>> p.plot_scores_evolution(show=False)

6.6.3 Manipulation Analysis

Single-Voter Manipulation

General class

class embedded_voting.Manipulation(ratings, embeddings, rule=None)
This general class is used for the analysis of the manipulability of some Rule by a single voter.

For instance, what proportion of voters can change the result of the rule (to their advantage) by giving false
preferences ?

Parameters

• ratings (Ratings or np.ndarray) – The ratings of voters to candidates

• embeddings (Embeddings) – The embeddings of the voters

• rule (Rule) – The aggregation rule we want to analysis.

ratings
The ratings of voters on which we do the analysis.

Type Profile

rule
The aggregation rule we want to analysis.

Type Rule

winner_
The index of the winner of the election without manipulation.

Type int

scores_
The scores of the candidates without manipulation.

Type float list

welfare_
The welfares of the candidates without manipulation.

Type float list

146 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> manipulation = Manipulation(ratings, embeddings, RuleSVDNash())
>>> manipulation.winner_
1
>>> manipulation.welfare_
[0.6651173304239..., 1.0, 0.0]

avg_welfare_
The function computes the average welfare of the winning candidate after a voter manipulation.

Returns The average welfare.

Return type float

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> manipulation = Manipulation(ratings, embeddings, RuleSVDNash())
>>> manipulation.avg_welfare_
0.933...

is_manipulable_
This function quickly computes if the ratings is manipulable or not.

Returns If True, the ratings is manipulable by a single voter.

Return type bool

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> manipulation = Manipulation(ratings, embeddings, RuleSVDNash())
>>> manipulation.is_manipulable_
True

manipulation_global_
This function applies the function manipulation_voter() to every voter.

Returns The list of the best candidates that can be turned into the winner for each voter.

Return type int list

6.6. Analysis Tools 147

Embedded Voting Documentation, Release 0.1.7

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> manipulation = Manipulation(ratings, embeddings, RuleSVDNash())
>>> manipulation.manipulation_global_
[1, 1, 0, 1, 1, 1, 1, 1, 0, 1]

manipulation_map(map_size=20, ratings_dim_candidate=None, show=True)
A function to plot the manipulability of the ratings when the polarisation and the coherence of
the ParametricProfile vary. The number of voters, dimensions, and candidates are those of the
profile_.

Parameters

• map_size (int) – The number of different coherence and polarisation param-
eters tested. The total number of test is map_size ^2.

• ratings_dim_candidate (np.ndarray) – Matrix of shape n_dim,
n_candidates containing the scores given by each group. More precisely, rat-
ings_dim_candidate[i,j] is the score given by the group represented by the dimension i to
the candidate j. If None specified, a new matrix is generated for each test.

• show (bool) – If True, display the manipulation maps at the end of the function.

Returns The manipulation maps : manipulator for the proportion of manipulator,
worst_welfare and avg_welfare for the welfare maps.

Return type dict

Examples

>>> np.random.seed(42)
>>> emb = EmbeddingsGeneratorPolarized(100, 3)(0)
>>> rat = RatingsFromEmbeddingsCorrelated(n_dim=3, n_candidates=5)(emb)
>>> manipulation = Manipulation(rat, emb, rule=RuleSVDNash())
>>> maps = manipulation.manipulation_map(map_size=5, show=False)
>>> maps['manipulator']
array([[0.33, 0. , 0. , 0. , 0.],

[0.34, 0.22, 0. , 0. , 0.],
[0.01, 0. , 0. , 0. , 0.],
[0. , 0.19, 0. , 0. , 0.],
[0.57, 0.22, 0. , 0. , 0.]])

manipulation_voter(i)
This function return, for the i^th voter, its favorite candidate that he can turn to a winner by manipulating
the election.

Parameters i (int) – The index of the voter.

Returns The index of the best candidate that can be elected by manipulation.

Return type int

prop_manipulator_
This function computes the proportion of voters that can manipulate the election.

148 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

Returns The proportion of voters that can manipulate the election.

Return type float

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> manipulation = Manipulation(ratings, embeddings, RuleSVDNash())
>>> manipulation.prop_manipulator_
0.2

set_profile(ratings, embeddings=None)
This function update the ratings of voters on which we do the analysis.

Parameters

• ratings (Ratings or np.ndarray) –

• embeddings (Embeddings) –

Returns The object itself.

Return type Manipulation

worst_welfare_
This function computes the worst possible welfare achievable by single voter manipulation.

Returns The worst welfare.

Return type float

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> manipulation = Manipulation(ratings, embeddings, RuleSVDNash())
>>> manipulation.worst_welfare_
0.665...

For ordinal extensions

class embedded_voting.ManipulationOrdinal(ratings, embeddings, rule_positional,
rule=None)

This class extends the Manipulation class to ordinal rule_positional (irv, borda, plurality, etc.).

Parameters

• ratings (Profile) – The ratings of voters on which we do the analysis.

• embeddings (Embeddings) – The embeddings of the voters.

• rule_positional (RulePositional) – The ordinal rule_positional used.

6.6. Analysis Tools 149

Embedded Voting Documentation, Release 0.1.7

• rule (Rule) – The aggregation rule we want to analysis.

rule
The aggregation rule we want to analysis.

Type Rule

winner_
The index of the winner of the election without manipulation.

Type int

welfare_
The welfares of the candidates without manipulation.

Type float list

extended_rule
The rule we are analysing

Type Rule

rule_positional
The rule_positional used.

Type RulePositional

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> rule_positional = RulePositionalBorda(3)
>>> manipulation = ManipulationOrdinal(ratings, embeddings, rule_positional,
→˓RuleSVDNash())
>>> manipulation.prop_manipulator_
0.0
>>> manipulation.manipulation_global_
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> manipulation.avg_welfare_
1.0

manipulation_voter(i)
This function return, for the i^th voter, its favorite candidate that he can turn to a winner by manipulating
the election.

Parameters i (int) – The index of the voter.

Returns The index of the best candidate that can be elected by manipulation.

Return type int

Particular cases

150 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

Borda

class embedded_voting.ManipulationOrdinalBorda(ratings, embeddings, rule=None)
This class do the single voter manipulation analysis for the RulePositionalBorda rule_positional. It is
faster than the general class class:ManipulationOrdinal.

Parameters

• ratings (Ratings or np.ndarray) – The ratings of voters to candidates

• embeddings (Embeddings) – The embeddings of the voters

• rule (Rule) – The aggregation rule we want to analysis.

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> manipulation = ManipulationOrdinalBorda(ratings, embeddings, RuleSVDNash())
>>> manipulation.prop_manipulator_
0.0
>>> manipulation.avg_welfare_
1.0
>>> manipulation.worst_welfare_
1.0
>>> manipulation.manipulation_global_
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

manipulation_voter(i)
This function return, for the i^th voter, its favorite candidate that he can turn to a winner by manipulating
the election.

Parameters i (int) – The index of the voter.

Returns The index of the best candidate that can be elected by manipulation.

Return type int

k-Approval

class embedded_voting.ManipulationOrdinalKApproval(ratings, embeddings, k=2,
rule=None)

This class do the single voter manipulation analysis for the RulePositionalKApproval rule_positional.
It is faster than the general class class:ManipulationOrdinal.

Parameters

• ratings (Profile) – The ratings of voters on which we do the analysis.

• embeddings (Embeddings) – The embeddings of the voters.

• k (int) – The k parameter for the k-approval rule.

• rule (Rule) – The aggregation rule we want to analysis.

6.6. Analysis Tools 151

Embedded Voting Documentation, Release 0.1.7

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> manipulation = ManipulationOrdinalKApproval(ratings, embeddings, 2,
→˓RuleSVDNash())
>>> manipulation.prop_manipulator_
0.0
>>> manipulation.avg_welfare_
1.0
>>> manipulation.worst_welfare_
1.0
>>> manipulation.manipulation_global_
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

manipulation_voter(i)
This function return, for the i^th voter, its favorite candidate that he can turn to a winner by manipulating
the election.

Parameters i (int) – The index of the voter.

Returns The index of the best candidate that can be elected by manipulation.

Return type int

Instant Runoff

class embedded_voting.ManipulationOrdinalIRV(ratings, embeddings, rule=None)
This class do the single voter manipulation analysis for the RuleInstantRunoff rule_positional. It is faster
than the general class class:ManipulationOrdinal.

Parameters

• ratings (Ratings or np.ndarray) – The ratings of voters to candidates

• embeddings (Embeddings) – The embeddings of the voters

• rule (Rule) – The aggregation rule we want to analysis.

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> manipulation = ManipulationOrdinalIRV(ratings, embeddings, RuleSVDNash())
>>> manipulation.prop_manipulator_
0.4
>>> manipulation.avg_welfare_
0.4
>>> manipulation.worst_welfare_
0.0

(continues on next page)

152 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

>>> manipulation.manipulation_global_
[2, 2, 1, 2, 1, 2, 1, 2, 1, 2]

manipulation_voter(i)
This function return, for the i^th voter, its favorite candidate that he can turn to a winner by manipulating
the election.

Parameters i (int) – The index of the voter.

Returns The index of the best candidate that can be elected by manipulation.

Return type int

Trivial Manipulations by Coalitions

General class

class embedded_voting.ManipulationCoalition(ratings, embeddings, rule=None)
This general class is used for the analysis of the manipulability of the rule by a coalition of voter.

It only look if there is a trivial manipulation by a coalition of voter. That means, for some candidate c different
than the current winner w, gather every voter who prefers c to w, and ask them to put c first and w last. If c is
the new winner, then the ratings can be manipulated.

Parameters

• ratings (Ratings or np.ndarray) – The ratings of voters to candidates

• embeddings (Embeddings) – The embeddings of the voters

• rule (Rule) – The aggregation rule we want to analysis.

ratings
The ratings of voter on which we do the analysis.

Type Profile

rule
The aggregation rule we want to analysis.

Type Rule

winner_
The index of the winner of the election without manipulation.

Type int

scores_
The scores of the candidates without manipulation.

Type float list

welfare_
The welfare of the candidates without manipulation.

Type float list

6.6. Analysis Tools 153

Embedded Voting Documentation, Release 0.1.7

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> manipulation = ManipulationCoalition(ratings, embeddings, RuleSVDNash())
>>> manipulation.winner_
1
>>> manipulation.welfare_
[0.6651173304239..., 1.0, 0.0]

is_manipulable_
A function that quickly computes if the ratings is manipulable.

Returns If True, the ratings is manipulable for some candidate.

Return type bool

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> manipulation = ManipulationCoalition(ratings, embeddings, RuleSVDNash())
>>> manipulation.is_manipulable_
True

manipulation_map(map_size=20, ratings_dim_candidate=None, show=True)
A function to plot the manipulability of the ratings when the polarisation and the coherence vary.

Parameters

• map_size (int) – The number of different coherence and polarisation parameters
tested. The total number of test is map_size ^2.

• ratings_dim_candidate (np.ndarray) – Matrix of shape n_dim,
n_candidates containing the scores given by each group. More precisely, rat-
ings_dim_candidate[i,j] is the score given by the group represented by the dimension i to
the candidate j. If not specified, a new matrix is generated for each test.

• show (bool) – If True, displays the manipulation maps at the end of the function.

Returns The manipulation maps : manipulator for the proportion of manipulator,
worst_welfare and avg_welfare for the welfare maps.

Return type dict

Examples

>>> np.random.seed(42)
>>> emb = EmbeddingsGeneratorPolarized(100, 3)(0)
>>> rat = RatingsFromEmbeddingsCorrelated(n_dim=3, n_candidates=5)(emb)
>>> manipulation = ManipulationCoalition(rat, emb, RuleSVDNash())

(continues on next page)

154 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

>>> maps = manipulation.manipulation_map(map_size=5, show=False)
>>> maps['worst_welfare']
array([[0.91880682, 1. , 1. , 1. , 0.93714861],

[0.9354928 , 0.75627811, 1. , 1. , 1.],
[0.6484071 , 1. , 1. , 1. , 1.],
[0.68626628, 0.9024018 , 1. , 1. , 1.],
[0.91491621, 0.9265847 , 1. , 1. , 1.]])

trivial_manipulation(candidate, verbose=False)
This function computes if a trivial manipulation is possible for the candidate passed as parameter.

Parameters

• candidate (int) – The index of the candidate for which we manipulate.

• verbose (bool) – Verbose mode. By default, is set to False.

Returns If True, the ratings is manipulable for this candidate.

Return type bool

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> manipulation = ManipulationCoalition(ratings, embeddings, RuleSVDNash())
>>> manipulation.trivial_manipulation(0, verbose=True)
1 voters interested to elect 0 instead of 1
Winner is 0
True

worst_welfare_
A function that compute the worst welfare attainable by coalition manipulation.

Returns The worst welfare.

Return type float

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> manipulation = ManipulationCoalition(ratings, embeddings, RuleSVDNash())
>>> manipulation.worst_welfare_
0.6651173304239...

6.6. Analysis Tools 155

Embedded Voting Documentation, Release 0.1.7

For ordinal extensions

class embedded_voting.ManipulationCoalitionOrdinal(ratings, embeddings,
rule_positional=None,
rule=None)

This class extends the ManipulationCoalition class to ordinal rules (irv, borda, plurality, etc.), because
the ManipulationCoalition cannot be used for ordinal preferences.

Parameters

• ratings (Ratings or np.ndarray) – The ratings of voters to candidates

• embeddings (Embeddings) – The embeddings of the voters

• rule_positional (RulePositional) – The ordinal rule used.

• rule (Rule) – The aggregation rule we want to analysis.

rule
The aggregation rule we want to analysis.

Type Rule

winner_
The index of the winner of the election without manipulation.

Type int

welfare_
The welfares of the candidates without manipulation.

Type float list

extended_rule
The rule we are analysing

Type Rule

rule_positional
The positional rule used.

Type RulePositional

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=0.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> rule_positional = RuleInstantRunoff()
>>> manipulation = ManipulationCoalitionOrdinal(ratings, embeddings, rule_
→˓positional, RuleSVDNash())
>>> manipulation.winner_
2
>>> manipulation.is_manipulable_
True
>>> manipulation.worst_welfare_
0.0

trivial_manipulation(candidate, verbose=False)
This function computes if a trivial manipulation is possible for the candidate passed as parameter.

156 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

Parameters

• candidate (int) – The index of the candidate for which we manipulate.

• verbose (bool) – Verbose mode. By default, is set to False.

Returns If True, the ratings is manipulable for this candidate.

Return type bool

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> manipulation = ManipulationCoalition(ratings, embeddings, RuleSVDNash())
>>> manipulation.trivial_manipulation(0, verbose=True)
1 voters interested to elect 0 instead of 1
Winner is 0
True

Particular cases

Borda

class embedded_voting.ManipulationCoalitionOrdinalBorda(ratings, embeddings,
rule=None)

This class do the coalition manipulation analysis for the RulePositionalBorda rule_positional.

Parameters

• ratings (Ratings or np.ndarray) – The ratings of voters to candidates

• embeddings (Embeddings) – The embeddings of the voters

• rule (Rule) – The aggregation rule we want to analysis.

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=0.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> manipulation = ManipulationCoalitionOrdinalBorda(ratings, embeddings,
→˓RuleSVDNash())
>>> manipulation.winner_
1
>>> manipulation.is_manipulable_
False
>>> manipulation.worst_welfare_
1.0

6.6. Analysis Tools 157

Embedded Voting Documentation, Release 0.1.7

k-Approval

class embedded_voting.ManipulationCoalitionOrdinalKApproval(ratings, embeddings,
k=2, rule=None)

This class do the coalition manipulation analysis for the RulePositionalKApproval rule_positional.

Parameters

• ratings (Ratings or np.ndarray) – The ratings of voters to candidates

• embeddings (Embeddings) – The embeddings of the voters

• k (int) – The parameter of the k-approval rule.

• rule (Rule) – The aggregation rule we want to analysis.

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=0.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> manipulation = ManipulationCoalitionOrdinalKApproval(ratings, embeddings, k=2,
→˓ rule=RuleSVDNash())
>>> manipulation.winner_
1
>>> manipulation.is_manipulable_
False
>>> manipulation.worst_welfare_
1.0

Instant Runoff

class embedded_voting.ManipulationCoalitionOrdinalIRV(ratings, embeddings,
rule=None)

This class do the coalition manipulation analysis for the RuleInstantRunoff rule_positional.

Parameters

• ratings (Ratings or np.ndarray) – The ratings of voters to candidates

• embeddings (Embeddings) – The embeddings of the voters

• rule (Rule) – The aggregation rule we want to analysis.

Examples

>>> np.random.seed(42)
>>> ratings_dim_candidate = [[1, .2, 0], [.5, .6, .9], [.1, .8, .3]]
>>> embeddings = EmbeddingsGeneratorPolarized(10, 3)(.8)
>>> ratings = RatingsFromEmbeddingsCorrelated(coherence=0.8, ratings_dim_
→˓candidate=ratings_dim_candidate)(embeddings)
>>> manipulation = ManipulationCoalitionOrdinalIRV(ratings, embeddings,
→˓RuleSVDNash())
>>> manipulation.winner_

(continues on next page)

158 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

(continued from previous page)

2
>>> manipulation.is_manipulable_
True
>>> manipulation.worst_welfare_
0.0

6.6.4 Algorithms Aggregation

Online Learning Analysis

class embedded_voting.OnlineLearning(list_agg, generator=None)
Class to compare the performance of different aggregators on a given generator.

Parameters

• list_agg (list of Aggregator) – List of aggregators to compare.

• generator (TruthGenerator) – Generator to use for the true ratings of the candidates

6.7 Aggregator

class embedded_voting.Aggregator(rule=None, embeddings_from_ratings=None, de-
fault_train=True, name=’aggregator’, default_add=True)

A class for an election generator with memory.

You can run an election by calling it with the matrix of ratings.

Parameters

• rule (Rule) – The aggregation rule you want to use in your elections. Default is
RuleFastNash

• embeddings_from_ratings (EmbeddingsFromRatings) – If no embeddings
are specified in the call, this EmbeddingsFromRatings object is use to gener-
ate the embeddings from the ratings. Default: EmbeddingsFromRatingsCorrela-
tion(preprocess_ratings=center_and_normalize).

• default_train (bool) – If True, then by default, train the embeddings at each election.

• name (str, optional) – Name of the aggregator.

• default_add (bool) – If True, then by default, add the ratings to the history.

ratings_history
The history of all ratings given by the voters.

Type np.ndarray

embeddings
The current embeddings of the voters.

Type Embeddings

6.7. Aggregator 159

Embedded Voting Documentation, Release 0.1.7

Examples

>>> aggregator = Aggregator()
>>> results = aggregator([[7, 5, 9, 5, 1, 8], [7, 5, 9, 5, 2, 7], [6, 4, 2, 4, 4,
→˓6], [3, 8, 1, 3, 7, 8]])
>>> results.embeddings_
Embeddings([[1. , 0.98602958, 0.01549503, -0.43839669],

[0.98602958, 1. , -0.09219821, -0.54916602],
[0.01549503, -0.09219821, 1. , 0.43796787],
[-0.43839669, -0.54916602, 0.43796787, 1.]])

>>> results.ranking_
[5, 0, 1, 3, 4, 2]
>>> results.winner_
5
>>> results = aggregator([[2, 4, 8], [9, 2, 1], [0, 2, 5], [4, 5, 3]])
>>> results.ranking_
[2, 1, 0]

reset()
Reset the variables ratings_history and embeddings.

Returns The object itself.

Return type Aggregator

train()
Update the variable embeddings, based on ratings_history.

Returns The object itself.

Return type Aggregator

6.8 Utils

6.8.1 Utilities functions for plots

This file is part of Embedded Voting.

embedded_voting.utils.plots.create_3d_plot(fig, position=None)
Create the background for a 3D plot on the non-negative orthant.

Parameters

• fig – The matplotlib figure on which we are drawing.

• position – The position of the subplot on which we are drawing.

Returns

Return type matplotlib ax

embedded_voting.utils.plots.create_map_plot(fig, image, position, title=”)
Create the background for a map plot.

Parameters

• fig (matplotlib figure) – The matplotlib figure on which we are drawing.

• image (np.ndarray) – The image to plot. Should be of size map_size, map_size.

• position (list) – The position of the subplot on which we are drawing.

160 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

• title (str) – Title of the plot.

Returns

Return type matplotlib ax

embedded_voting.utils.plots.create_ternary_plot(fig, position=None)
Create the background for a 2D ternary plot of the non-negative orthant.

Returns

Return type matplotlib ax

6.8.2 Miscellaneous utility functions

This file is part of Embedded Voting.

embedded_voting.utils.miscellaneous.center_and_normalize(x)
Center and normalize the input vector.

Parameters x (np.ndarray or list) –

Returns x minus its mean. Then the result is normalized (divided by its norm).

Return type np.ndarray

Examples

>>> my_vector = [0, 1, 2]
>>> center_and_normalize(my_vector)
array([-0.70710678, 0. , 0.70710678])

embedded_voting.utils.miscellaneous.clean_zeros(matrix, tol=1e-10)
Replace in-place all small values of a matrix by 0.

Parameters

• matrix (ndarray) – Matrix to clean.

• tol (float, optional) – Threshold. All entries with absolute value lower than tol are put
to zero.

Returns

Return type None

Examples

>>> import numpy as np
>>> mat = np.array([[1e-12, -.3], [.8, -1e-13]])
>>> clean_zeros(mat)
>>> mat # doctest: +NORMALIZE_WHITESPACE
array([[0. , -0.3],

[0.8, 0.]])

embedded_voting.utils.miscellaneous.max_angular_dilatation_factor(vector, cen-
ter)

Maximum angular dilatation factor to stay in the positive orthant.

6.8. Utils 161

Embedded Voting Documentation, Release 0.1.7

Consider center and vector two unit vectors of the positive orthant. Consider a “spherical dilatation” that moves
vector by multiplying the angle between center and vector by a given dilatation factor. The question is: what is
the maximal value of this dilatation factor so that the result still is in the positive orthant?

More formally, there exists a unit vector unit_orthogonal and an angle theta in [0, pi/2] such that vector =
cos(theta) * center + sin(theta) * unit_orthogonal. Then there exists a maximal angle theta_max in [0, pi/2]
such that cos(theta_max) * center + sin(theta_max) * unit_orthogonal is still in the positive orthant. We define
the maximal angular dilatation factor as theta_max / theta.

Parameters

• vector (np.ndarray) – A unit vector in the positive orthant.

• center (np.ndarray) – A unit vector in the positive orthant.

Returns The maximal angular dilatation factor. If vector is equal to center, then np.inf is returned.

Return type float

Examples

>>> max_angular_dilatation_factor(
... vector=np.array([1, 0]),
... center=np.array([1, 1]) * np.sqrt(1/2)
...)
1.0
>>> max_angular_dilatation_factor(
... vector=np.array([1, 1]) * np.sqrt(1/2),
... center=np.array([1, 0])
...)
2.0

>>> my_center = np.array([1., 1., 1.]) * np.sqrt(1/3)
>>> my_unit_orthogonal = np.array([1, -1, 0]) * np.sqrt(1/2)
>>> my_theta = np.pi / 9
>>> my_vector = np.cos(my_theta) * my_center + np.sin(my_theta) * my_unit_
→˓orthogonal
>>> k = max_angular_dilatation_factor(vector=my_vector, center=my_center)
>>> k
1.961576024...
>>> dilated_vector = np.cos(k * my_theta) * my_center + np.sin(k * my_theta) * my_
→˓unit_orthogonal
>>> np.round(dilated_vector, 4)
array([0.8944, 0. , 0.4472])

>>> max_angular_dilatation_factor(
... np.array([np.sqrt(1/2), np.sqrt(1/2)]),
... np.array([np.sqrt(1/2), np.sqrt(1/2)])
...)
inf

embedded_voting.utils.miscellaneous.normalize(x)
Normalize the input vector.

Parameters x (np.ndarray or list) –

Returns x divided by its Euclidean norm.

Return type np.ndarray

162 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

Examples

>>> my_vector = np.arange(3)
>>> normalize(my_vector)
array([0. , 0.4472136 , 0.89442719])

>>> my_vector = [0, 1, 2]
>>> normalize(my_vector)
array([0. , 0.4472136 , 0.89442719])

If x is null, then x is returned (only case where the result has not a norm of 1):

>>> my_vector = [0, 0, 0]
>>> normalize(my_vector)
array([0, 0, 0])

embedded_voting.utils.miscellaneous.pseudo_inverse_scalar(x)

Parameters x (float) –

Returns Inverse of x if it is not 0.

Return type float

Examples

>>> pseudo_inverse_scalar(2.0)
0.5
>>> pseudo_inverse_scalar(0)
0.0

embedded_voting.utils.miscellaneous.ranking_from_scores(scores)
Deduce ranking over the candidates from their scores.

Parameters scores (list) – List of floats, or list of tuple.

Returns ranking – The indices of the candidates, so candidate ranking[0] has the best score, etc. If
scores are floats, higher scores are better. If scores are tuples, a lexicographic order is used. In
case of tie, candidates with lower indices are favored.

Return type list

Examples

>>> my_scores = [4, 1, 3, 4, 0, 2, 1, 0, 1, 0]
>>> ranking_from_scores(my_scores)
[0, 3, 2, 5, 1, 6, 8, 4, 7, 9]

>>> my_scores = [(1, 0, 3), (2, 1, 5), (0, 1, 1), (2, 1, 4)]
>>> ranking_from_scores(my_scores)
[1, 3, 0, 2]

embedded_voting.utils.miscellaneous.singular_values_short(matrix)
Singular values of a matrix (short version).

Parameters matrix (np.ndarray) –

6.8. Utils 163

Embedded Voting Documentation, Release 0.1.7

Returns Singular values of the matrix. In order to have a “short” version (and limit computation),
we consider the square matrix of smallest dimensions among matrix @ matrix.T and matrix.T
@ matrix, and then output the square roots of its eigenvalues.

Return type np.ndarray

Examples

>>> my_matrix = np.array([
... [0.2 , 0.5 , 0.7 , 0.9 , 0.4],
... [0.1 , 0. , 1. , 0.8 , 0.8],
... [0.17, 0.4 , 0.66, 0.8 , 0.4]
...])
>>> singular_values = singular_values_short(my_matrix)
>>> np.round(singular_values, 4)
array([2.2747, 0.5387, 0.])

embedded_voting.utils.miscellaneous.volume_parallelepiped(matrix)
Volume of the parallelepiped defined by the rows of a matrix.

Parameters matrix (np.ndarray) – The matrix.

Returns The volume of the parallelepiped defined by the rows of a matrix (in the r-dimensional
space defined by its r rows). If the rank of the matrix is less than its number of rows, then the
result is 0.

Return type float

Examples

>>> volume_parallelepiped(matrix=np.array([[10, 0, 0, 0], [0, 42, 0, 0]])) #
→˓doctest: +ELLIPSIS
420.0...

>>> volume_parallelepiped(matrix=np.array([[10, 0, 0, 0], [42, 0, 0, 0]]))
0.0

>>> volume_parallelepiped(matrix=np.array([[10, 0, 0, 0]])) # doctest: +ELLIPSIS
10.0...

embedded_voting.utils.miscellaneous.winner_from_scores(scores)
Deduce the best of candidates from their scores.

Parameters scores (list) – List of floats, or list of tuple.

Returns winner – The index of the winning candidate. If scores are floats, higher scores are better.
If scores are tuples, a lexicographic order is used. In case of tie, candidates with lower indices
are favored.

Return type int

Examples

164 Chapter 6. Reference

Embedded Voting Documentation, Release 0.1.7

>>> my_scores = [4, 1, 3, 4, 0, 2, 1, 0, 1, 0]
>>> winner_from_scores(my_scores)
0

>>> my_scores = [(1, 0, 3), (2, 1, 5), (0, 1, 1), (2, 1, 4)]
>>> winner_from_scores(my_scores)
1

6.8. Utils 165

Embedded Voting Documentation, Release 0.1.7

166 Chapter 6. Reference

CHAPTER 7

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

7.1 Types of Contributions

7.1.1 Report Bugs

Report bugs at https://github.com/TheoDlmz/embedded_voting/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

7.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

7.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

167

https://github.com/TheoDlmz/embedded_voting/issues

Embedded Voting Documentation, Release 0.1.7

7.1.4 Write Documentation

Embedded Voting could always use more documentation, whether as part of the official Embedded Voting docs, in
docstrings, or even on the web in blog posts, articles, and such.

7.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/TheoDlmz/embedded_voting/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

7.2 Get Started!

Ready to contribute? Here’s how to set up embedded_voting for local development.

1. Fork the embedded_voting repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/embedded_voting.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv embedded_voting
$ cd embedded_voting/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 embedded_voting tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

168 Chapter 7. Contributing

https://github.com/TheoDlmz/embedded_voting/issues

Embedded Voting Documentation, Release 0.1.7

7.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.6, 3.7 and 3.8, and for PyPy. Check https://travis-ci.org/TheoDlmz/
embedded_voting/pull_requests and make sure that the tests pass for all supported Python versions.

7.4 Tips

To run a subset of tests:

$ pytest tests.test_embedded_voting

7.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

7.3. Pull Request Guidelines 169

https://travis-ci.org/TheoDlmz/embedded_voting/pull_requests
https://travis-ci.org/TheoDlmz/embedded_voting/pull_requests

Embedded Voting Documentation, Release 0.1.7

170 Chapter 7. Contributing

CHAPTER 8

Credits

8.1 Development Lead

• Théo Delemazure <theo.delemazure@ens.fr>

• François Durand <fradurand@gmail.com>

• Fabien Mathieu <fabien.mathieu@normalesup.org>

8.2 Contributors

None yet. Why not be the first?

171

mailto:theo.delemazure@ens.fr
mailto:fradurand@gmail.com
mailto:fabien.mathieu@normalesup.org

Embedded Voting Documentation, Release 0.1.7

172 Chapter 8. Credits

CHAPTER 9

History

9.1 0.1.7 (2023-02-14)

• New API for aggregation simulations: evaluate, make_generator, f_max, f_renorm, SingleEstimator, Ran-
domWinner, make_aggs.

• Notebooks for IJCAI-23 paper submission

9.2 0.1.6 (2023-01-23)

• Aggregators: * Possibility to add or not the current ratings to the training set.

• Embeddings:

– The parameter norm has no default value (instead of True).

– Fix a bug: when norm=False, the values of the attributes n_voter and n_dim were swapped by mistake.

– Rename method scored to times_ratings_candidate.

– Rename method _get_center to get_center, so that it is now part of the API.

– Rename method normalize to normalized, recenter to recentered, dilate to dilated because they return a
new Embeddings object (not modify the object in place).

– Fix a bug in method get_center.

– Methods get_center, recentered and dilated now also work with non-normalized embeddings.

– Document that dilated can output embeddings that are not in the positive orthant.

– Add dilated_new: new dilatation method whose output is in the positive orthant.

– Add recentered_and_dilated: recenter and dilate the embeddings (using dilated_new).

– Add mixed_with: mix the given Embeddings object with another one.

– Rename plot_scores to plot_ratings_candidate.

173

Embedded Voting Documentation, Release 0.1.7

• Embeddings generators:

– Rename EmbeddingsGeneratorRandom to EmbeddingsGeneratorUniform.

– Add EmbeddingsGeneratorFullyPolarized: create embeddings that are random vectors of the canonical
basis.

– EmbeddingsGeneratorPolarized now relies on EmbeddingsGeneratorUniform, EmbeddingsGenerator-
FullyPolarized and the method Embeddings.mixed_with.

– Move EmbeddingCorrelation and renamed it.

– Rewrote the EmbeddingsFromRatingsCorrelation and how it compute the number of singular values to
take.

• Epistemic ratings generators:

– Add TruthGenerator: a generator for the ground truth (“true value”) of each candidate.

– Add TruthGeneratorUniform: a uniform generator for the ground truth (“true value”) of each candidate.

– RatingsGeneratorEpistemic and its subclasses now take a TruthGenerator as parameter.

– Add RatingsGeneratorEpistemicGroups as an intermediate class between the parent class RatingsGenera-
torEpistemic and the child classes using groups of voters.

– RatingsGeneratorEpistemic now do not take groups sizes as parameter: only RatingsGeneratorEpistemic-
Groups and its subclasses do.

– Rename RatingsGeneratorEpistemicGroupedMean to RatingsGeneratorEpistemicGroupsMean, Ratings-
GeneratorEpistemicGroupedMix to RatingsGeneratorEpistemicGroupsMix RatingsGeneratorEpistemic-
GroupedNoise to RatingsGeneratorEpistemicGroupsNoise.

– Remove method RatingsGeneratorEpistemic.generate_true_values: the same result can be obtained with
RatingsGeneratorEpistemic.truth_generator.

– Add RatingsGeneratorEpistemicGroupedMixFree and RatingsGeneratorEpistemicGroupsMixScale.

• Ratings generators:

– RatingsGenerator and subclasses: remove *args in call because it was not used.

– RatingsGeneratorUniform: add optional parameters minimum_rating and maximum_rating.

– Possibility to save scores in a csv file

• RatingsFromEmbeddingsCorrelated:

– Move parameter coherence from __call__ to __init__.

– Rename parameter scores_matrix to ratings_dim_candidate.

– Parameters n_dim and n_candidates are optional if ratings_dim_candidate is specified.

– Add optional parameters minimum_random_rating, maximum_random_rating and clip.

– Parameter clip now defaults to False (the former version behaved as if clip was always True).

• Single-winner rules:

– Rename ScoringRule to Rule.

– Rename all subclasses accordingly. For example, rename FastNash to RuleFastNash.

– Rename SumScores to RuleSumRatings and ProductScores to RuleProductRatings.

– Rename RulePositionalExtension to RulePositional and rename subclasses accordingly.

– Rename RuleInstantRunoffExtension to RuleInstantRunoff.

174 Chapter 9. History

Embedded Voting Documentation, Release 0.1.7

– Add RuleApprovalSum, RuleApprovalProduct, RuleApprovalRandom.

– Changed the default renormalization function in RuleFast.

– Change the method in RuleMLEGaussian.

– Add RuleModelAware.

– Add RuleRatingsHistory.

– Add RuleShiftProduct which replace RuleProductRatings.

• Multiwinner rules: rename all rules with prefix MultiwinnerRule. For example, rename IterFeatures to Multi-
winnerRuleIterFeatures.

• Manipulation:

– Rename SingleVoterManipulation to Manipulation and rename subclasses accordingly.

– Rename SingleVoterManipulationExtension to ManipulationOrdinal and rename subclasses accordingly.

– Rename ManipulationCoalitionExtension to ManipulationCoalitionOrdinal and rename subclasses ac-
cordingly.

• Rename AggregatorSum to AggregatorSumRatings and AggregatorProduct to AggregatorProductRatings.

• Add max_angular_dilatation_factor: maximum angular dilatation factor to stay in the positive orthant.

• Rename create_3D_plot to create_3d_plot.

• Moved function to the utils module.

• Reorganize the file structure of the project.

9.3 0.1.5 (2022-01-04)

• Aggregator functions.

• Online learning.

• Refactoring Truth epistemic generators.

• Rule taking history into account.

9.4 0.1.4 (2021-12-06)

• New version with new structure for Ratings and Embeddings

9.5 0.1.3 (2021-10-27)

• New version with new internal structure for the library

9.6 0.1.2 (2021-07-05)

• New version with handy way to use the library for algorithm aggregation and epistemic social choice

9.3. 0.1.5 (2022-01-04) 175

Embedded Voting Documentation, Release 0.1.7

9.7 0.1.1 (2021-04-02)

• Minor bugs.

9.8 0.1.0 (2021-03-31)

• End of the internship, first release on PyPI.

176 Chapter 9. History

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

177

Embedded Voting Documentation, Release 0.1.7

178 Chapter 10. Indices and tables

Python Module Index

e
embedded_voting.experiments.aggregation,

141
embedded_voting.utils.miscellaneous, 161
embedded_voting.utils.plots, 160

179

Embedded Voting Documentation, Release 0.1.7

180 Python Module Index

Index

Symbols
_rule (embedded_voting.RulePositional attribute), 134
_score_components (embed-

ded_voting.RulePositional attribute), 134

A
Aggregator (class in embedded_voting), 159
avg_welfare_ (embedded_voting.Manipulation at-

tribute), 147

B
base_rule (embedded_voting.RulePositional at-

tribute), 134

C
center_and_normalize() (in module embed-

ded_voting.utils.miscellaneous), 161
clean_zeros() (in module embed-

ded_voting.utils.miscellaneous), 161
compute_features() (embed-

ded_voting.MultiwinnerRuleIterFeatures
static method), 141

copy() (embedded_voting.Embeddings method), 105
create_3d_plot() (in module embed-

ded_voting.utils.plots), 160
create_map_plot() (in module embed-

ded_voting.utils.plots), 160
create_ternary_plot() (in module embed-

ded_voting.utils.plots), 161

D
dilated() (embedded_voting.Embeddings method),

106
dilated_aux() (embedded_voting.Embeddings

method), 107
dilated_new() (embedded_voting.Embeddings

method), 107

E
embedded_voting.experiments.aggregation

(module), 141
embedded_voting.utils.miscellaneous

(module), 161
embedded_voting.utils.plots (module), 160
Embeddings (class in embedded_voting), 105
embeddings (embedded_voting.Aggregator attribute),

159
embeddings (embedded_voting.MultiwinnerRule at-

tribute), 138
embeddings_ (embedded_voting.Rule attribute), 119
EmbeddingsCorrelation (class in embed-

ded_voting), 113
EmbeddingsFromRatings (class in embed-

ded_voting), 117
EmbeddingsFromRatingsCorrelation (class in

embedded_voting), 116
EmbeddingsFromRatingsIdentity (class in em-

bedded_voting), 117
EmbeddingsFromRatingsRandom (class in embed-

ded_voting), 117
EmbeddingsFromRatingsSelf (class in embed-

ded_voting), 117
EmbeddingsGenerator (class in embedded_voting),

113
EmbeddingsGeneratorFullyPolarized (class

in embedded_voting), 115
EmbeddingsGeneratorPolarized (class in em-

bedded_voting), 114
EmbeddingsGeneratorUniform (class in embed-

ded_voting), 113
evaluate() (in module embed-

ded_voting.experiments.aggregation), 142
extended_rule (embed-

ded_voting.ManipulationCoalitionOrdinal
attribute), 156

extended_rule (embed-
ded_voting.ManipulationOrdinal attribute),

181

Embedded Voting Documentation, Release 0.1.7

150

F
f_max() (in module embed-

ded_voting.experiments.aggregation), 143
f_renorm() (in module embed-

ded_voting.experiments.aggregation), 143
fake_ratings_ (embedded_voting.RulePositional at-

tribute), 134
features_ (embedded_voting.RuleFeatures attribute),

129
features_ (embedded_voting.RuleSVDMax attribute),

128
features_vectors (embed-

ded_voting.MultiwinnerRuleIter attribute),
139

G
get_center() (embedded_voting.Embeddings

method), 108
ground_truth_ (embed-

ded_voting.RatingsGeneratorEpistemic at-
tribute), 100

ground_truth_ (embed-
ded_voting.RatingsGeneratorEpistemicGroupsMean
attribute), 100

ground_truth_ (embed-
ded_voting.RatingsGeneratorEpistemicGroupsMix
attribute), 102

ground_truth_ (embed-
ded_voting.RatingsGeneratorEpistemicGroupsMixFree
attribute), 104

ground_truth_ (embed-
ded_voting.RatingsGeneratorEpistemicGroupsNoise
attribute), 101

ground_truth_ (embed-
ded_voting.RatingsGeneratorEpistemicMultivariate
attribute), 103

I
is_manipulable_ (embedded_voting.Manipulation

attribute), 147
is_manipulable_ (embed-

ded_voting.ManipulationCoalition attribute),
154

K
k_ (embedded_voting.MultiwinnerRule attribute), 138

M
make_aggs() (in module embed-

ded_voting.experiments.aggregation), 143
make_generator() (in module embed-

ded_voting.experiments.aggregation), 144

Manipulation (class in embedded_voting), 146
manipulation_global_ (embed-

ded_voting.Manipulation attribute), 147
manipulation_map() (embed-

ded_voting.Manipulation method), 148
manipulation_map() (embed-

ded_voting.ManipulationCoalition method),
154

manipulation_voter() (embed-
ded_voting.Manipulation method), 148

manipulation_voter() (embed-
ded_voting.ManipulationOrdinal method),
150

manipulation_voter() (embed-
ded_voting.ManipulationOrdinalBorda
method), 151

manipulation_voter() (embed-
ded_voting.ManipulationOrdinalIRV method),
153

manipulation_voter() (embed-
ded_voting.ManipulationOrdinalKApproval
method), 152

ManipulationCoalition (class in embed-
ded_voting), 153

ManipulationCoalitionOrdinal (class in em-
bedded_voting), 156

ManipulationCoalitionOrdinalBorda (class
in embedded_voting), 157

ManipulationCoalitionOrdinalIRV (class in
embedded_voting), 158

ManipulationCoalitionOrdinalKApproval
(class in embedded_voting), 158

ManipulationOrdinal (class in embedded_voting),
149

ManipulationOrdinalBorda (class in embed-
ded_voting), 151

ManipulationOrdinalIRV (class in embed-
ded_voting), 152

ManipulationOrdinalKApproval (class in em-
bedded_voting), 151

max_angular_dilatation_factor() (in mod-
ule embedded_voting.utils.miscellaneous), 161

mixed_with() (embedded_voting.Embeddings
method), 109

modified_ratings_ (embedded_voting.RuleFast at-
tribute), 130

modified_ratings_ (embed-
ded_voting.RuleRatingsHistory attribute),
137

moving_voter (embedded_voting.MovingVoter
attribute), 145

MovingVoter (class in embedded_voting), 144
MultiwinnerRule (class in embedded_voting), 138
MultiwinnerRuleIter (class in embedded_voting),

182 Index

Embedded Voting Documentation, Release 0.1.7

138
MultiwinnerRuleIterFeatures (class in embed-

ded_voting), 140
MultiwinnerRuleIterSVD (class in embed-

ded_voting), 140

N
n_candidates (embedded_voting.Ratings attribute),

99
n_dim (embedded_voting.Embeddings attribute), 105
n_voters (embedded_voting.Embeddings attribute),

105
n_voters (embedded_voting.Ratings attribute), 98
normalize() (in module embed-

ded_voting.utils.miscellaneous), 162
normalized() (embedded_voting.Embeddings

method), 109

O
OnlineLearning (class in embedded_voting), 159

P
plot() (embedded_voting.Embeddings method), 110
plot_candidate() (embedded_voting.Embeddings

method), 110
plot_candidates() (embedded_voting.Embeddings

method), 110
plot_fake_ratings() (embed-

ded_voting.RulePositional method), 135
plot_features() (embedded_voting.RuleFeatures

method), 130
plot_features() (embedded_voting.RuleSVDMax

method), 128
plot_features_evolution() (embed-

ded_voting.MovingVoter method), 145
plot_ranking() (embedded_voting.Rule method),

119
plot_ratings() (embed-

ded_voting.RatingsGeneratorEpistemic
method), 100

plot_ratings_candidate() (embed-
ded_voting.Embeddings method), 111

plot_scores_evolution() (embed-
ded_voting.MovingVoter method), 145

plot_weights() (embed-
ded_voting.MultiwinnerRuleIter method),
139

plot_winner() (embedded_voting.Rule method), 119
plot_winners() (embed-

ded_voting.MultiwinnerRuleIter method),
139

points (embedded_voting.RulePositional attribute),
134

prop_manipulator_ (embed-
ded_voting.Manipulation attribute), 148

pseudo_inverse_scalar() (in module embed-
ded_voting.utils.miscellaneous), 163

Q
quota (embedded_voting.MultiwinnerRuleIter at-

tribute), 138

R
RandomWinner (class in embed-

ded_voting.experiments.aggregation), 141
ranking_ (embedded_voting.Rule attribute), 120
ranking_from_scores() (in module embed-

ded_voting.utils.miscellaneous), 163
Ratings (class in embedded_voting), 98
ratings (embedded_voting.Manipulation attribute),

146
ratings (embedded_voting.ManipulationCoalition at-

tribute), 153
ratings (embedded_voting.MultiwinnerRule at-

tribute), 138
ratings_ (embedded_voting.MovingVoter attribute),

145
ratings_ (embedded_voting.Rule attribute), 119
ratings_history (embedded_voting.Aggregator at-

tribute), 159
RatingsFromEmbeddings (class in embed-

ded_voting), 116
RatingsFromEmbeddingsCorrelated (class in

embedded_voting), 118
RatingsGenerator (class in embedded_voting), 99
RatingsGeneratorEpistemic (class in embed-

ded_voting), 99
RatingsGeneratorEpistemicGroupsMean

(class in embedded_voting), 100
RatingsGeneratorEpistemicGroupsMix (class

in embedded_voting), 102
RatingsGeneratorEpistemicGroupsMixFree

(class in embedded_voting), 104
RatingsGeneratorEpistemicGroupsNoise

(class in embedded_voting), 101
RatingsGeneratorEpistemicMultivariate

(class in embedded_voting), 103
RatingsGeneratorUniform (class in embed-

ded_voting), 99
recentered() (embedded_voting.Embeddings

method), 111
recentered_and_dilated() (embed-

ded_voting.Embeddings method), 112
reset() (embedded_voting.Aggregator method), 160
Rule (class in embedded_voting), 119
rule (embedded_voting.Manipulation attribute), 146

Index 183

Embedded Voting Documentation, Release 0.1.7

rule (embedded_voting.ManipulationCoalition at-
tribute), 153

rule (embedded_voting.ManipulationCoalitionOrdinal
attribute), 156

rule (embedded_voting.ManipulationOrdinal attribute),
150

rule (embedded_voting.MovingVoter attribute), 145
rule_positional (embed-

ded_voting.ManipulationCoalitionOrdinal
attribute), 156

rule_positional (embed-
ded_voting.ManipulationOrdinal attribute),
150

RuleApprovalProduct (class in embedded_voting),
122

RuleApprovalRandom (class in embedded_voting),
123

RuleApprovalSum (class in embedded_voting), 122
RuleFast (class in embedded_voting), 130
RuleFastLog (class in embedded_voting), 132
RuleFastMin (class in embedded_voting), 131
RuleFastNash (class in embedded_voting), 131
RuleFastSum (class in embedded_voting), 131
RuleFeatures (class in embedded_voting), 129
RuleInstantRunoff (class in embedded_voting),

137
RuleMaxParallelepiped (class in embed-

ded_voting), 124
RuleMLEGaussian (class in embedded_voting), 132
RuleModelAware (class in embedded_voting), 133
RulePositional (class in embedded_voting), 134
RulePositionalBorda (class in embedded_voting),

136
RulePositionalKApproval (class in embed-

ded_voting), 136
RulePositionalPlurality (class in embed-

ded_voting), 135
RulePositionalVeto (class in embedded_voting),

135
RuleRatingsHistory (class in embedded_voting),

137
RuleShiftProduct (class in embedded_voting), 121
RuleSumRatings (class in embedded_voting), 121
RuleSVD (class in embedded_voting), 125
RuleSVDLog (class in embedded_voting), 128
RuleSVDMax (class in embedded_voting), 127
RuleSVDMin (class in embedded_voting), 127
RuleSVDNash (class in embedded_voting), 126
RuleSVDSum (class in embedded_voting), 126
RuleZonotope (class in embedded_voting), 124

S
score_() (embedded_voting.Rule method), 120

scores_ (embedded_voting.Manipulation attribute),
146

scores_ (embedded_voting.ManipulationCoalition at-
tribute), 153

scores_ (embedded_voting.Rule attribute), 120
scores_focus_on_last_ (embedded_voting.Rule

attribute), 120
set_k() (embedded_voting.MultiwinnerRule method),

138
set_profile() (embedded_voting.Manipulation

method), 149
set_quota() (embedded_voting.MultiwinnerRuleIter

method), 139
set_rule() (embedded_voting.RulePositional

method), 135
SingleEstimator (class in embed-

ded_voting.experiments.aggregation), 142
singular_values_short() (in module embed-

ded_voting.utils.miscellaneous), 163

T
take_min (embedded_voting.MultiwinnerRuleIter at-

tribute), 138
times_ratings_candidate() (embed-

ded_voting.Embeddings method), 112
train() (embedded_voting.Aggregator method), 160
trivial_manipulation() (embed-

ded_voting.ManipulationCoalition method),
155

trivial_manipulation() (embed-
ded_voting.ManipulationCoalitionOrdinal
method), 156

TruthGenerator (class in embedded_voting), 97
TruthGeneratorGeneral (class in embed-

ded_voting), 97
TruthGeneratorNormal (class in embed-

ded_voting), 98
TruthGeneratorUniform (class in embed-

ded_voting), 98

V
volume_parallelepiped() (in module embed-

ded_voting.utils.miscellaneous), 164

W
weights (embedded_voting.MultiwinnerRuleIter

attribute), 139
welfare_ (embedded_voting.Manipulation attribute),

146
welfare_ (embedded_voting.ManipulationCoalition

attribute), 153
welfare_ (embedded_voting.ManipulationCoalitionOrdinal

attribute), 156

184 Index

Embedded Voting Documentation, Release 0.1.7

welfare_ (embedded_voting.ManipulationOrdinal at-
tribute), 150

welfare_ (embedded_voting.Rule attribute), 120
winner_ (embedded_voting.Manipulation attribute),

146
winner_ (embedded_voting.ManipulationCoalition at-

tribute), 153
winner_ (embedded_voting.ManipulationCoalitionOrdinal

attribute), 156
winner_ (embedded_voting.ManipulationOrdinal at-

tribute), 150
winner_ (embedded_voting.Rule attribute), 121
winner_from_scores() (in module embed-

ded_voting.utils.miscellaneous), 164
winners_ (embedded_voting.MultiwinnerRule at-

tribute), 138
winners_ (embedded_voting.MultiwinnerRuleIter at-

tribute), 139
worst_welfare_ (embedded_voting.Manipulation at-

tribute), 149
worst_welfare_ (embed-

ded_voting.ManipulationCoalition attribute),
155

Index 185

	Embedded Voting
	Features
	Credits

	Installation
	Stable release
	From sources

	Usage
	Tutorials
	Fast Tutorial
	1. My first Profile
	2. Run an election
	3. Analysis of the voting rules
	4. Ordinal preferences
	5. Manipulability analysis
	6. Multi-winner elections
	7. Algorithms aggregation

	IJCAI
	Reference Scenario
	Impact of Numerical Parameters
	Changing Noises
	Soft Partition of the Agents

	Reference
	Truth Generators
	Ratings classes
	Embeddings
	Linking Ratings and Embeddings
	Voting Rules
	Analysis Tools
	Aggregator
	Utils

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips
	Deploying

	Credits
	Development Lead
	Contributors

	History
	0.1.7 (2023-02-14)
	0.1.6 (2023-01-23)
	0.1.5 (2022-01-04)
	0.1.4 (2021-12-06)
	0.1.3 (2021-10-27)
	0.1.2 (2021-07-05)
	0.1.1 (2021-04-02)
	0.1.0 (2021-03-31)

	Indices and tables
	Python Module Index
	Index

